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Abstract. As more and more memory-intensive applications are moved
into the cloud, data center operators face the challenge of providing
sufficient main memory resources while achieving high resource utiliza-
tion. Solutions to overcome the unsatisfying performance degradation
of traditional on-demand paging include memory disaggregation that
allows applications to access remote memory or compressing memory
pages in local DRAM; however, the former’s extended failure domain
and the latter’s low efficacy limit their broad applicability. This paper
presents RapidSwap, a hierarchical far memory manager that exploits
the wide availability of phase-change memory (Intel Optane memory)
in data centers to achieve quasi-DRAM performance at a significantly
lower total cost of ownership (TCO). RapidSwap migrates infrequently
accessed data to slower and cheaper devices in a hierarchy of storage de-
vices by tracking applications’ memory accesses. Evaluated with several
real-world cloud benchmarks, RapidSwap achieves a reduction of 20%
in operating cost at minimal performance degradation and is 30% more
cost-effective than pure DRAM solutions. The results demonstrate that
proper management of new memory technologies can yield significant
TCO savings in cloud data centers.
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1 Introduction

Over the past two decades, big data and artificial intelligence techniques have
been adopted by numerous application domains. A common characteristic of such
workloads is their need for large amounts of main memory to process the big data
sets [20]. As these workloads are moved into the cloud, cloud service providers
have started to offer virtual machine (VM) instances optimized for such memory-
intensive workloads. Amazon, Google Cloud, and Microsoft Azure, for example,
support VM instances with up to 24 terabytes of main memory [5,6,17]. Ideally,
data center operators would equip their machines with sufficient DRAM to store
all data; however, this approach negatively impacts the TCO of a warehouse.

One way to lower memory pressure is to impose a price penalty on using
DRAM and induce the use of cheaper low-tier storage devices. According to the
pricing policy of different Amazon EC2 instances as of June 2021 [4], DRAM
storage is 45 times more expensive than solid state drive (SSD) storage at the
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same capacity. A better approach than offloading the burden of using less DRAM
to the customer is to provide the required performance through an optimized
storage hierarchy that can offer the same service (performance) at a lower price.
Common techniques involve demand paging to local storage [14] and memory
disaggregation. Based on the principle of locality [2], both techniques keep fre-
quently accessed pages (also called hot pages) in the fast and expensive DRAM
and relegate infrequently accessed parts (the cold pages) to slower and cheaper
storage tiers. Both techniques suffer from a significant performance slowdown
the more memory is paged out. This is caused by (1) the large access latency of
far storage tiers and (2) inflexible and slow system software that fails to exploit
new and fast storage technologies such as phase change memory (PCM) [13].

In this paper, we present RapidSwap, a framework built for modern storage
hierarchies to achieve a lower TCO at near-DRAM performance. RapidSwap
classifies pages into different temperatures based on their access history. Hot
pages are kept in DRAM and gradually downgraded to slower devices as they
cool down. RapidSwap’s awareness of the storage hierarchy and its optimized
software stack minimize the page reclaim overhead and achieve a significantly
lower TCO and cost effectiveness than existing solutions.

2 Background and Motivation

2.1 Tiered Storage and Novel Storage Devices

Tiered storage, also known as hierarchical storage, is a widely adopted technique
in computing devices [7]. Faster and more expensive devices are placed at the
upper side of the storage hierarchy, while slower and cheaper media are located
below. Placing the data of all workloads in high-performance devices yields the
best performance at the expense of larger operating costs. One possibility to de-
crease the cost while maintaining performance is to monitor and classify memory
pages by their access frequency into different temperatures from hot to cold. The
principle of locality dictates that, in general, the colder a page gets, the less likely
it is to be accessed and can thus be migrated to slower storage devices without
causing a large performance drop.

Recently, new storage technologies with dramatically improved performance
characteristics have entered the market. Non-volatile memory (NVM) devices
such as phase change memory (PCM) used in Intel’s Optane product line have
a read/write theoretical latency of 10 µs [10]; three orders of magnitude below
that of conventional Hard Disk Drives (HDD). The NVDIMM interface allows
direct load/store accesses by the CPU and is thus able to benefit from caches.

2.2 Techniques Proposed to Lower Memory Pressure

Transparent Memory Compression compresses cold pages in memory with
a lightweight algorithm [3]. Support in the Linux kernel is provided by zswap [21].
Pages that do not benefit from compression are sent to local storage devices.
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Table 1: Comparison of existing techniques and RapidSwap.

Type Granularity Failure Domain Overhead

Software-defined Far Memory [15] Page Local CPU

Hydra [16] Page Remote CPU & Network

RackMem [13] Page Remote Network

RapidSwap Page Local minimal CPU

Optane PMEM Memory Mode [8] Cache-line Local No SW Overhead

Zswap is expected to work well if the read latency from DRAM is significantly
shorter than that of the backing store, however, its efficiency depends on the
compressibility of the data in memory. A practical implementation of zswap is
provided by Google’s Far Memory [15]. Applied in their data centers, Google Far
Memory classifies around 20% of all pages as cold, and among those, about 70%
achieve 3x compression and are kept in DRAM. The remaining 30% are stored
on traditional storage devices. Google reports a 4-5% reduction of their TCO.

Memory Disaggregation pools memory resources from different physical
nodes over a low latency and high throughput network to overcome the lim-
itations of the node-centric computation model. A significant disadvantage of
memory disaggregation is the extension of the failure domain from a single lo-
cal to multiple remote machines. Replication, erasure coding [16], or hybrid
approaches [19] are used to achieve fault tolerance, however, these approaches
requires additional storage or computational resources.

2.3 Tiered storage as a promising alternative

Current approaches from Linux demand paging, over transparent memory com-
pression, to memory disaggregation all have shortcomings. On the other hand,
RapidSwap eliminates the deficiencies of existing approaches and implements a
high-performance demand paging system to a local storage hierarchy consisting
of various types of devices with different characteristics. Data is stored in one of
the local storage tiers according to RapidSwap’s page classification. Pages are
assigned a temperature ranging from hot to cold, representing how recently the
page has been accessed. Pages are migrated between the different storage tiers
depending on their temperature to store each page in the most beneficial device.
Table 1 summarizes state-of-the-art techniques and RapidSwap.

3 RapidSwap

This section discusses the design and implementation of RapidSwap. RapidSwap
is composed of three main components: an optimized swap handler, a storage
frontend, and a storage backend. Figure 1 shows the overall architecture.
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Fig. 1: Overall architecture of RapidSwap.

3.1 Swap Handler

Linux’s virtual memory management is too slow for modern storage devices [12,13].
RapidSwap’s optimized swap handler follows the design of RackMem [13] and
manages pages with two quasi-ordered lists: the active and the inactive page list.
To quickly react to page allocation requests, the inactive list is kept populated
by pro-actively paging data out. If the inactive list becomes empty under high
load, victim pages are taken from the head of the active page list.

3.2 Storage Frontend

RapidSwap’s storage frontend manages the different tiered storage devices and
exposes a uniform paging device to the swap handler. Consecutive pages are
grouped into slabs to minimize metadata and I/O overhead. The storage frontend
swaps in/out slabs from/to different storage devices and maintains a mapping
of virtual pages to their locations in the storage hierarchy.

Slabs are classified into hot, warm, or cold. A newly allocated slab is consid-
ered hot, then transitions over warm to cold if it is not accessed for a certain
period of time. Cold slabs are periodically migrated to the next lower level in
the storage hierarchy. A page fault causes the associated slab to be immediately
migrated up to the fastest storage below DRAM.

3.3 Storage Backend

The storage backend provides a uniform abstraction for physical storage devices.
When the storage backend registers a device, RapidSwap’s storage frontend gath-
ers information about the storage device including its capacity and allocation,
4 KiB read/write, and deallocation latencies.
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Table 2: Yahoo! Cloud Serving Benchmark (YCSB) workloads [1].

Workload Type Distribution Details

A: Update Heavy Zipfian 50% Reads, 50% Writes

B: Read Mostly Zipfian 95% Reads, 5% Writes

C: Read Only Zipfian 100% Reads

D: Read Latest Latest Read from the fresh data

E: Short Ranges Zipfian/Uniform 95% Scans, 5% Writes

F: Read-Modify-Write Zipfian 50% Reads, 50% Read-Modify-Writes

Table 3: Maximum number of PMEM slabs allocated by local memory size.

Workload Type Local: 50% Local: 60% Local: 70% Local: 80%

A 2388 1403 330 222

B 2374 1438 402 215

C 2345 1433 273 225

D 1459 795 405 292

E 2549 2184 396 332

F 2340 1456 366 309

4 Results

4.1 Experimental Setup

RapidSwap is evaluated on a data center server node with an Intel Xeon Silver
4215R processor and 64 GiB of DRAM. The node contains a two-tiered storage
hierarchy consisting of a 960 GB Intel 905P Optane NVMe PCIe (SSD) and an
128 GB Intel Optane Persistent Memory 200 Series (PMEM). The base operating
system is Ubuntu Server 20.04. The slab size is set to 1 MB (256 pages per slab).
Slabs are demoted to the next colder level after a threshold of 5 seconds.

We use six different workloads from the Yahoo! Cloud Serving Benchmark
(YCSB) suite [1] to measure the performance of RapidSwap. Benchmarks A, B, C,
D, and F follow a zipfian access pattern where 80% of the total accesses go to 20%
of the data. Workload D predominantly reads from just inserted data that is not
physically contiguous. Workload E selects the key with a zipfian distribution,
then scans a uniformly distributed number of records.

The performance of RapidSwap is evaluated by measuring the query response
latency as reported by YCSB. Memory scarcity is simulated by artificially lim-
iting the available DRAM to a certain percentage of the benchmark’s overall
maximum memory requirements (resident set size, RSS). RapidSwap is com-
pared against a Linux baseline with PMEM and SSD paging devices where the
former is prioritized, i.e., the SSD is only used when the PMEM paging device
is completely full. The size of the available PMEM device is identical to that in
RapidSwap. We also compare RapidSwap against compressed DRAM. Other
than zswap we store all pages in DRAM whether compressible or not.

4.2 RapidSwap Performance

Degradation over DRAM Figure 2 plots the normalized throughput of the
different implementations and with local memory limits set to 80, 70, 60, and
50 percent of the benchmark’s RSS, which is around 3 GiB for all workloads. As
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Fig. 2: Normalized throughput over DRAM of RapidSwap and prior work.
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Fig. 3: 99th percentile latency of RapidSwap and prior work.

the amount of DRAM is reduced, all implementations experience performance
degradations. Workloads exhibit three different patterns with minor (workloads
A, B, C, and F; C is shown as a representative), average (workload D), and high sen-
sitivity (workload E) to the available local memory. Table 3 shows the maximal
number of allocated slab in PMEM for the different benchmarks. RapidSwap
outperform the other approaches in all configurations.

CPU Overhead and I/O latency The CPU overhead is gathered by calcu-
lating the average system level utilization throughout the workload execution.
CPU overhead caused by all three methods is less than 1% compared to the ideal
case with 100% local memory. The average 99th percentile latency reported by
RapidSwap is presented in Figure 3. Compared to the Linux baseline and com-
pressed DRAM, RapidSwap exhibits significantly lower latencies thanks to its
optimized page fault handler and pro-active page reclamation.

4.3 Cost of Storage Tier

To analyze the benefits of RapidSwap on the cost of the entire storage tier, we
surveyed the current market prices of the different storage backends [18,9,11].
The cost is obtained by multiplying the peak utilization in all storage tiers
by the cost of the respective device. The total cost is obtained by adding the
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cost of the allocated DRAM. We consider only the fractional cost of a storage
device (as opposed to the cost of the entire device) to reflect the pricing models
of cloud data centers. RapidSwap achieves cost savings for all workloads and
all configurations. At 70%, a 18-20% cost reduction in the storage hierarchy is
achieved. As the amount of local memory is reduced, more data gets paged out to
secondary storage which, in turn, leads to a higher cost in the storage hierarchy.

4.4 Cost Effectiveness

The total cost of the storage tier does not consider the cost incurred by per-
formance degradation. A more sensible metric is the cost effectiveness, i.e., per-
formance per cost. We compared the cost effectiveness of compressed DRAM
and RapidSwap relative to a DRAM-only solution. Our first observation is that
RapidSwap achieves a significantly better cost effectiveness than other solu-
tions for all workloads and all configurations. Compared to DRAM, RapidSwap
achieves an up to 40% higher cost effectiveness with 70% of the data kept in
DRAM and 30% paged out. As the amount of DRAM is reduced, workloads ex-
perience a higher performance degradation and require larger amounts of storage.

5 Conclusion and Future Work

Motivated by the broad availability of novel storage technologies and the short-
comings of existing approaches to resource overcommitment, we have presented
RapidSwap, a hierarchical far memory implementation that is built for diverse
storage tiers composed of faster and slower devices. Paging only to local devices,
RapidSwap does not extend the failure domain, and its awareness of the storage
hierarchy allows it to significantly outperform other techniques that swap out
data locally. The results demonstrate that proper management of new memory
technologies can yield significant cost savings in data centers.

One direction of future work is application-specific resource management.
As shown in previous work [15], RapidSwap can also benefit from a machine
learning based approach to adjust the amount of local memory and the policies to
degrade slabs to colder storage. Also, we did not yet compare RapidSwap against
the memory mode configuration of PMEM, which offers similar functionality as
RapidSwap, implemented in hardware at cache-line granularity.
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