
RackMem: A Tailored Caching Layer for Rack Scale Computing
Changyeon Jo, Hyunik Kim, Hexiang Geng, Bernhard Egger

Seoul National University

Seoul, Republic of Korea

{changyeon,hyunik,hexiang,bernhard}@csap.snu.ac.kr

ABSTRACT
High-performance computing (HPC) clusters suffer from an overall

low memory utilization that is caused by the node-centric memory

allocation combined with the variable memory requirements of

HPC workloads. The recent provisioning of nodes with terabytes

of memory to accommodate workloads with extreme peak memory

requirements further exacerbates the problem. Memory disaggrega-

tion is viewed as a promising remedy to increase overall resource

utilization and enable cost-effective up-scaling and efficient oper-

ation of HPC clusters, however, the overhead of demand paging

in virtual memory management has so far hindered performant

implementations. To overcome these limitations, this work presents

RackMem, an efficient implementation of disaggregated memory

for rack scale computing. RackMem addresses the shortcomings

of Linux’s demand paging algorithm and automatically adapts to

the memory access patterns of individual processes to minimize

the inherent overhead of remote memory accesses. Evaluated on a

cluster with an Infiniband interconnect, RackMem outperforms the

state-of-the-art RDMA implementation and Linux’s virtual mem-

ory paging by a significant margin. RackMem’s custom demand

paging implementation achieves a tail latency that is two orders of

magnitude better than that of the Linux kernel. Compared to the

state-of-the-art remote paging solution, RackMem achieves a 28%

higher throughput and a 44% lower tail latency for a wide variety

of real-world workloads.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering→Virtualmemory;Distributedmem-
ory; Cloud computing.

KEYWORDS
Resource disaggregation; Remote memory; High-performance com-

puting; Virtualization

ACM Reference Format:
Changyeon Jo, Hyunik Kim, Hexiang Geng, Bernhard Egger. 2020. Rack-

Mem: A Tailored Caching Layer for Rack Scale Computing. In Proceedings of
the 2020 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’20), October 3–7, 2020, Virtual Event, GA, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3410463.3414643

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00

https://doi.org/10.1145/3410463.3414643

-0.5) [0.5-1) [1-2) [2-4) [4-
Memory [GB/core]

0

5

10

15

H

PC
 sy

st
em

s

Figure 1: Averagememory per core of the fastest 50 systems1

from the TOP500 list (June 2020) [51].

1 INTRODUCTION
Recent years have brought an increasing demand for applications

in the parallel and high-performance computing (HPC) domain. Ap-

plications not only comprise core computer science workloads such

as in-memory databases or machine learning, but extend across a

broad range of science and engineering disciplines such as bioinfor-

matics, climate science, material science, and high-energy physics.

The memory system of an HPC cluster plays an important role

in accommodating these workloads in terms of performance, cost,

and energy consumption [54]. Studies analyzing the memory uti-

lization of HPC clusters find three important characteristics: first,

HPC workloads exhibit a bimodal distribution in memory capac-

ity requirements with several workloads requiring over 4 GB per

core [54]. Second, the memory usage over time across the nodes in

an HPC system shows a large variation ranging from a few hun-

dreds of megabytes up to tens of gigabytes [32]. Third, the working

set of a workload is typically significantly smaller than its peak

memory requirements [9]. These characteristics make it difficult to

determine the ‘optimal’ memory size in an HPC cluster (Figure 1),

leading to low average utilization of the available resources [9, 20].

Recent advances in high-speed interconnects [38] allow for a

paradigm shift away from isolated to disaggregated hardware re-

sources [11, 31, 33, 42, 44, 50]. Sharing resources such as processors,

memory, or storage over a fast network [1, 6, 24, 29, 30, 48] has the

potential to improve resource utilization through flexible allocation

that is not possible in server-centric architectures.

Memory disaggregation has been proposed to process big data

and in-memory workloads on commodity servers with moderate

amounts of physical memory [2, 20]. Disaggregating a low-latency

high-throughput resource such as DRAM over a network, how-

ever, is a challenging task. Despite improvements in fast optical

networks, access latency and throughput are still one to two or-

ders of magnitude below that of local memory [2, 38]. Exploiting

the principle of locality, existing implementations employ the lo-

cal memory as a cache for remote memory. Remote memory is

1
The fastest 50 systems providing memory information.

https://doi.org/10.1145/3410463.3414643
https://doi.org/10.1145/3410463.3414643

implemented by a custom block device and made available to the

operating system as a fast swap device [16, 18]; however, Linux’s

paging subsystem is not optimized for such fast backends. Efforts to

improve its performance [34–36] still incur a significant tail latency.

In this work, we present RackMem, a novel RDMA-backed caching

layer for rack-scale memory disaggregation under Linux. To avoid

the extreme tail latencies of the Linux kernel’s default page fault

handler, RackMem includes its own paging module that improves

the tail latency by one to two orders of magnitude. RackMem ex-

poses memory management policies and access statistics to user

space, allowing for an easy integration of custom cache manage-

ment policies tailored to specific workloads. Implemented in a re-

cent Linux kernel and evaluated on a rack comprising eight compute

nodes connected by an InfiniBand interconnect, experiments with

various real-world parallel workloads in memory-constrained envi-

ronments demonstrate that RackMem is able to raise the average

memory utilization by 30% and 6% while reducing the total turn-

around time by 20% and 8% compared to isolated compute nodes

with paging to local SSD and a RDMA-based swap device [16],

respectively. RackMem’s optimized page fault handler achieves a

97.7% and 98.2% lower 99
th

percentile latency compared to Linux’s

paging subsystem backed by local memory and RDMA, demonstrat-

ing that RackMem is particularly well suited for latency critical

workloads.

The remainder of this paper is organized as follows. Section 2

explains the motivation for this work and analyzes the performance

of the Linux page fault handler. Sections 3 and 4 describe the design

and implementation of RackMem, its performance is compared

against local memory, RDMA, and SSD-based paging devices in

Section 5. Sections 6 and 7 discuss related work and conclude this

paper.

2 BACKGROUND AND MOTIVATION
2.1 Memory Provisioning in HPC Data Centers
Memory provisioning contributes significantly to the total cost

of ownership (TCO) of a HPC cluster [45, 49]. Figure 1 revealed

that the fastest supercomputers exhibit a significant variance in

the amount of memory provisioned per core. While some of this

variance can be explained by different architectures containing

specialized accelerators, memory provisioning in HPC clusters is

surprisingly ad-hoc with little analysis-based guidelines. Studies

have shown that production HPC workloads exhibit a bimodal

memory distribution [54], that memory usage varies significantly

between nodes in a cluster [32], and that the working set, i.e., the

amount of memory accessed during a certain time interval, is typi-

cally significantly smaller than the peak memory requirements of

a workload. Data center traces by Google in 2011 [17] and Alibaba

in 2018 [3] confirm that the average aggregated memory utiliza-

tion has not improved significantly in that time span and still only

reaches about 60 percent [47]. The problem is further aggravated

by provisioning up-scaled nodes with many processor cores and

terabytes of memory to accommodate new types of workloads with

large resource requirements [5, 8, 46]. As a result, this compute-

node-centric memory allocation in HPC data centers precludes a

high resource utilization and ultimately leads to an increased TCO.

2.2 Resource Disaggregation to the Rescue
Resource disaggregation is a promising approach to overcome the

limitations of server-centric models by pooling resources from sep-

arate physical machines and making them accessible over a fast

network [11]. Figure 2 demonstrates the the potential of memory

disaggregation in comparison with the node-centric model. The

figure plots the simulated execution a job queue containing 1000

data center workloads (Table 1) on a cluster comprising thirty-five

40-core machines with 16 GB of RAM and five nodes with 20 cores

and 32 GB of physical memory each. A job requires between 1-8

cores and 4-32 GB of memory. In the Node-centric scenario, a job is
placed only if a node can satisfy the requested CPU and memory re-

sources. The Optimal scenario shows the potential (and upper limit)

of memory disaggregation by assuming no performance penalty

for remote memory accesses. This scenario is logically identical

to pooling the resources of all 40 nodes into a single node with

1500 CPU cores and 720 GB of memory. The scenarios RackMem
and Infiniswap show the performance of the presented approach

and the state-of-the-art RDMA paging [18]. Jobs are placed on a

node if at least 50 percent of the requested memory resources are

available locally. In these scenarios, remote memory accesses incur

overhead; the slowdown in dependence of the amount of available

local memory is obtained from real-world experiments (Figure 7).

The cumulative distribution function (CDF) of the job completion

time for the four scenarios is shown in Figure 2 (a). The mean turn-

around time of Optimal, RackMem, Infiniswap, and Node-centric
is 48.4, 59.1, 100.2, and 120.5 epochs, respectively, and all disaggre-

gation scenarios show clear benefits over the node-centric model

even with realistic performance penalties. The aggregated memory

utilization is plotted in Figure 2 (b). We observe that that memory

disaggregation allows the available resources to be utilized almost

fully at all times. The simulation also demonstrates the benefits of

RackMem’s optimized demand paging in contrast to Inifiniswap

which is implemented as a swap device backend to Linux’s demand

paging system.

2.3 Limitations of Linux’s Demand Paging
A common choice to transparently support additional storage is

to employ the virtual memory management (VMM) capabilities of

commodity hardware. The operating system’s page fault handler,

invoked when an application tries to access a virtual memory page

currently not residing in the local memory, forwards the request

to read/write a memory page from/to the storage device. Google’s

FarMemory [26] and Infiniswap [18] both plug into Linux’s page

handler by registering as a storage backend. LegoOS [47] imple-

ments distributed virtual memory in the page fault handler.

GNU/Linux is the de-facto standard operating system for data

centers. Linux has supported demand paging since early on, and its

implementation is primarily optimized for block device-based swap

devices such as harddisks and, more recently, solid-state drives

(SSDs). Linux’ implementations of page fault handling and demand

paging, while heavily optimized, have grown into complex pieces

of code with deep and complex call paths and comprising several

thousand lines of code. Inherently optimized for block devices sev-

eral orders of magnitude slower than main memory, Linux’ demand

paging does not perform well with fast backends such as Infiniband.

0 100 200 300
(a) Job Completion Time

0.00

0.25

0.50

0.75

1.00

C
D

F

(epoch)

Optimal
RackMem
Infiniswap
Node-centric

0 100 200 300
(b) Memory Utilization (%)

0

25

50

75

100

U
til

iz
at

io
n

(%
)

(epoch)

Figure 2: Job completion time and memory utilization of 1000 workloads for different resource sharing models.

50th 90th 95th 99th 99.5th 99.9th
Percentile

101

102

103

La
te

nc
y

(
s)

RackMem - read
RackMem - mgmt
RackMem - reclaim
Linux - read
Linux - mgmt
Linux - reclaim

Figure 3: Log-scale pagefault handler latency in Linux v5.3.9.
The latency breakdown is for do_swap_page in /mm/memory.c.

Figure 3 plots the latency of Linux’ pagefault handler (kernel

version 5.3.9) with an RDMA backend over Infiniband and Rack-

Mem’s tailored page fault handling for different percentiles. To

stress demand paging, the Spark PageRank benchmark is executed

in a cgroup limiting the available local memory to 30% of the work-

load’s working set size. Looking at the performance of the Linux

pagefault handler first, compared to the median value (50
th

per-

centile) with a latency of 24µs , the 99th and 99.9th percentile exhibit

a severe 43- and 81-fold slowdown at 721µs and 2840µs , respectively.
Handling a demand paging pagefault can be broken down into

three actions: mgmt: management overhead caused by updating

data structures and page tables, read: reading a page from backing

storage, and reclaim: reclaiming a page in local memory
2
. The bars

in Figure 3 reveal the latencies of the three actions. While mgmt
and read observe a “modest” 10-fold slowdown from the 50 to the

99.9th percentile, the slowdown of reclaim is dramatic: 167-fold

at 99, 313-fold at 99.5, and 351-fold at the 99.9th percentile. The

analysis of Linux’s pagefault handler reveals four bottlenecks that

hamper exploiting the full potential of fast disaggregated memory.

2
Page reclamation involves finding a victim page and can trigger writing data to

backing storage if no free page is available

1. Contention on shared data structures. All processes share
a global memory pool that are managed in a least-recently-used

(LRU) queue of accessed memory pages. This data structure be-

comes the main bottleneck when the system is frequently paging

in/out data from/to fast paging devices such remote memory. The

synchronous page reclamation process’ accesses to the LRU queue

and other shared data structures in particular is one of the main

culprits for the extreme tail latency.

2. Tail-latency of page reclamation. The pagefault handler
in Linux frequently triggers the page reclamation function when

there is no readily available free page. This operation can block

a pagefault for a few milliseconds and has been identified to be

the main performance bottleneck of under intensive paging. To

reclaim pages, Linux’ pagefault handler scans the entire LRU list in

the system to find free pages. The reclaim function has a deep call

depth and nested loops inside and takes up to 2600µs to complete

- which is a few hundred times slower than a remote page access

over Infiniband RDMA. While this degree of latency can be hidden

and is acceptable for slower storage backends, it is not suitable for

the fast storage backends available today.

3. Slow data path. The mismatch between the block device

abstraction and the interface for remote memory adds significant

overhead to the data path. Bypassing the block device I/O stack by

directly invoking the remote memory APIs can significantly reduce

the access latency to remote memory.

4. Lack of workload-specific optimizations. All processes
are treated equally by Linux’s virtual memory implementation.

This design prevents fine-tuning paging policies for applications

with distinct memory access patterns to further reduce the overhead

of memory disaggregation.

Without significant modifications to the demand paging imple-

mentation in Linux, is is impossible to avoid this tail-latency prob-

lem for to virtual memory backed by fast remote memory [18, 37].

Modifying Linux’ demand paging implementation comprising a few

tens of thousands of lines with complex call paths is a challenging

task that is not only likely to introduce new bugs but could also lead

to security problems. The approach chosen by RackMem bypasses

Linux’s demand paging altogether and implements an custom page

fault handler that is optimized for parallel access, fast storage back-

ends and tailored for RDMA over Infiniband. The following sections

describe the design and implementation of RackMem in detail.

Application
RackMem

Memory Manager
Unmodified
Application

RackMem
Virtual Memory

Kernel
Virtual Memory

RackMem
Block Device

RackMem Distributed Virtual Storage

RackMem Networking RackMem I/O

Remote
Memory Remote SSD Local

SSD

U
se

r
sp

ac
e

R
es

ou
rc

e
Po

ol

abstraction

K
er

ne
l S

pa
ce

I/O OptimizationRDMA

virtual memory address
memory request

remote paging
(fast path)

remote paging
(slow path)

…

…

Figure 4: High-level architecture of RackMem.

3 RACKMEM DESIGN
From an operational viewpoint, RackMem utilizes the local memory

as a cache for distributed memory. Each memory region managed

by RackMem has a (dynamically adjustable) limit on how much

local memory it is allowed to occupy; data not residing in the local

cache is located on a remote node.

Figure 4 illustrates the high-level architecture of RackMem. Grey

boxes represent components implemented by RackMem, white

boxes show applications, kernel components, or storage devices

not specific to RackMem. The first of two core components is the

Distributed Virtual Storage (DVS) layer. DVS provides a reliable,
distributed, byte-addressable storage interface to different local

and remote storage types. The simple interface allows applications

or other kernel components to access unused memory located in

remote nodes. DVS provides optional reliability through replica-

tion and policies to utilize idle memory resources in the cluster in

a balanced manner. Access to different types of backends is pro-

vided by lean drivers that expose a uniform interface to the DVS

layer for allocation, deallocation, and I/O. In Figure 4, the compo-

nents RackMem Networking and RackMem I/O provide access

to remote memory over RDMA and remote and local file storage;

additional types can be added by implementing the interface for

the new backend.

The second core component of RackMem is the Virtual Mem-
ory layer. This layer provides independent and highly-optimized dy-

namic paging for high performance backends such as RDMA, called

the “fast path”. User-space applications first register RackMem-

managed virtual memory regions through a system-call interface

after which nativememory read/write instructions are able to access

distributed storage in a transparent manner. The main disadvan-

tage of this design is that applications need to be modified to make

def rackmem_vm_fault(struct vm_fault *vmf)
{

/* Step 1: obtain pointer to RackMem region */
rr = (struct rack_region *) vmf->vma->private_data;
/* Step 2: lock page */
r_page = &rr->pages[index];
lock(&r_page->lock);
/* Step 3: page still free list in local memory? */
if (r_page->flags & INACTIVE)) { /* yes */

/* set flag for prefetched pages */
if (r_page->flags & PREFETCH) cache_hit = 1;
/* remap page and move back to active list */
rack_page_remap(rr, r_page, address);

} else { /* no */
/* Step 4: get free page to hold faulted page */
rack_get_page(rr, &r_page->buf);
/* Step 5: restore page from backend storage */
rack_page_restore(rr, r_page);

}
/* Step 6: remove lock */
unlock(&r_page->lock);
/* Step 7: (optional) proactive page reclamation */
rack_request_reclamation(rr, nr_pages);
/* Step 8: (optional) prefetch */
rack_prefetch_pages(rr, address, window_size, cache_hit);

}

Figure 5: Code of the RackMem pagefault handler.

use of the optimized RackMem virtual memory. For virtual ma-

chines, seamless integration is provided by a modified hypervisor;

for applications that cannot be modified, RackMem supports re-

mote paging via Linux’s virtual memory implementation (the “slow

path”) by providing theRackMemBlock Device. TheRackMem
Memory Manager, finally, is a user-space component offering ad-

vanced memory management features such as collecting detailed

statistics, dynamically repartitioning the amount of available local

memory, or implementing advanced application-specific memory

management policies for the different RackMem memory regions.

Other user-level components of RackMem include a naming service

and a discovery protocol and are not shown in Figure 4.

3.1 RackMem Virtual Memory
The main purpose of RackMem Virtual Memory (RVM) is to pro-

vide an abstraction for remote memory. Commodity hardware does

not (yet) support transparent and direct access to remote memory,

thus requiring explicit management of remote memory. The vir-

tual memory abstraction to remote memory implemented in RVM

allows for transparent access to remote memory and minimized

the transitioning overhead from a server-centric to a disaggregated

architecture.

An important design consideration of virtual memory – besides

usability – is performance. Since remote memory accesses are still

an order of magnitude slower than accesses to local memory [38],

the benefit of memory disaggregation is easily lost if disaggregation

incurs a significant performance. Small improvements in virtual

memory performance translate to millions of dollars at a large

scale [26], hence, RackMem’s main goal is set to improve virtual

memory performance with fast storage backends.

3.1.1 Design Considerations for RVM. The analysis of Linux’s de-
mand paging (Section 2.3) revealed severe contention on global

shared data structures with fast storage backends. To eliminate this

bottleneck and improve scalability, RackMem maintains separate

data structures for each virtual address space.

Virtual memory management. Requests for virtual memory

managed by RackMem are handled by RVM. For each request,

RVM creates a unique descriptor and initialized the necessary data

structures. RackMem transparently manages its virtual address

ranges; hardware pagefaults are handled directly by RVM, hence,

user-level applications can access the entire address region using

native memory operations. Memory is managed at page granularity

and the actual allocation is delayed until the first access. When an

application first accesses an unmapped page, a new page is allocated

in the local memory cache and mapped into the application’s virtual

memory space. If the local cache is full, one or more vicitm pages are

paged out to backend storage via the DVS layer before a new page

is allocated or a previously paged-out page is brought back. The

cache size of each RackMem memory region can be dynamically

adjusted through a system call interface from userspace.

Pagefault handling.While pagefault handling latency is a con-

cern for any demand paging system, the adverse effects of a in-

efficient pagefault handler are more severe with fast backends.

RackMem uses a number of techniques to reduce the number of

pagefaults and the latency of its pagefault handler to a minimum.

First, separate weakly-ordered active and free lists of pages are

maintained for each region. Second, RackMem actively attempts to

reduce the number of faults through prefetching. Third, it seeks to

always keep a minimum number pages on the free list to avoid the

time-consuming operation of selecting a victim page and paging

out its contents to remote storage before the faulted-on page can be

brought back in. Figure 5 shows the annotated code of RackMem’s

fast pagefault handler that proceeds with the following steps.

(1) Obtain pointer to data structures of affected region.

(2) Lock page to prevent data corruption.

(3) Lookup page in local cache. If found, map page into virtual

address space and goto step 6.

(4) Find a free page in cache; if no such page exists, select and

evict victim page.

(5) If accessed page has been paged out, restore its contents.

(6) Unlock page

(7) Wake-up proactive page reclamation thread to proactively

evict infrequently accessed pages and create a pool of avail-

able free pages.

(8) Perform synchronous prefetch with data around the faulting

address to reduce future pagefault handling overhead.

3.1.2 Latency hiding techniques. This section discusses the two

main latency hiding techniques, prefetching and proactive page

reclamation, in more detail.

Prefetching. Prefetching data to local memory ahead of an

access significantly reduces the pagefault handling latency by elim-

inating costly I/O operations during pagefault handling. Especially

batch data processing applications frequently exhibit sequential

memory access patterns for which prefetching is particularly effec-

tive [21, 22]. The separation of data structures per memory region

allows RackMem to track multiple access streams for co-located

applications; heuristics that exploit this information are discussed

in Section 4.1.

Reactive and proactive page reclamation. When the local

cache is full, accessing an unmapped page requires selecting and

paging out of a victim page. Page reclamation faces three challenges:

first, if the victim page is dirty its contents have to be paged out

which incurs a significant overhead. Second, selecting the “wrong”

vicitm page, i.e., a page that is accessed soon again, will severely hurt

performance. Third, I/O over modern RDMA interconnects is so fast

that the latency of a sophisticated victim selection algorithm easily

offsets the benefits of accurate victim selection. RackMem addresses

these challenges by employing both reactive and proactive page

reclamation policies. Reactive page reclamation occurs when the

cache is completely full and a page needs to be reclaimed to serve

a pagefault. This overhead cannot be hidden, so victim selection

should be fast rather than accurate. Proactive page reclamation, on

the other hand, reduces the chance of reactive page reclamation

by proactively evicting less-frequently accessed data and placing

the pages on the free list. This mechanism is implemented in a

background task that does not directly affect the latency of the

pagefault handler; a more accurate and computationally intensive

victim selection can thus be employed. Implementations of the two

page reclamation techniques are discussed in Section 4.1.

3.2 RackMem Distributed Virtual Storage
RackMem’s DVS layer abstracts the backend storage devices and

presents a combined linear byte-addressable address space to the

upper layers. DVS supports not only remote memory as backend

storage devices; any device that implements the backend DVS API

can be used by DVS. Virtual addresses are translated into backend

device locations comprising of the backend ID and the memory

offset in the storage device.

The DVS layer handles selection of the backend storage devices,

plus storage allocation and reclamation. DVS does not identify re-

mote or local storage devices, instead, APIs to register backend

storage devices and to inform the DVS layer about the amount of

free storage on each backend device are provided. In the current

implementation, the tasks of identification, naming, and periodi-

cally reporting the status of each backend device are implemented

by user-level tasks.

DVS supports optional fault tolerance and replication by dupli-

cating data to a second remote node or local storage.

4 IMPLEMENTATION
RackMem’s virtual memory layer, the distributed virtual storage

layer, and the remote storage backends are implemented by separate

Linux kernel modules. RackMem exposes the distributed storage

via the character device /dev/rackmem and the management API

through a debugfs device. This implementation allows users of

RackMem to allocate distributed storage with a call to mmap() and
to manage and tune the operation of RackMem through simple

Unix file I/O on the debugfs device. In the remainder of this sec-

tion, implementation details of the different parts of RackMem are

discussed.

4.1 RackMem Virtual Memory Module
The RackMem VM (RVM) module registers the character device

/dev/rackmem. An application requests a RackMem virtual memory

region by invoking the mmap() system call with a file descriptor to

that device and the desired size of the the region. RVM registers

its own pagefault handler to process pagefaults occurring in the

newly allocated region as described in Section 3.1.1.

Prefetch algorithm. The prefetch algorithm in RVM imple-

ments a modified version the virtual memory area-based (VMA-

based) prefetching technique that has recently been integrated into

the Linux kernel. VMA-based prefetching exploits spatial locality

in the virtual address space rather than the physical location of the

data. VMA-based prefetching achieves better accuracy than physi-

cal address-based prefetching at the expense of losing the ability to

exploit sequential I/O requests. This is, however, less of a concern

since recent storage devices such as SSDs, NVMe, or RDMA-backed

remote memory provide good random access performance.

RackMem maintains a dynamic window size that dictates how

many pages are prefetched after a pagefault. Other than the VMA-

based prefetcher, RackMem tracks pagefaults on a per-core-basis
by storing the prefetch window size and the last faulted address in

processor-local storage. This simple optimization allows RackMem

to detect and exploit distinct per-core memory access patterns.

The synchronous prefetching is invoked at the end of a pagefault

(Figure 5). In our experiments, asynchronous prefetching in the

background did not yield significant performance benefits. The

reason for this somewhat unexpected result is that the latency of a

prefetch operations is lower than the overhead incurred of asyn-

chronous I/O and extra synchronization in a background thread.

Active and free list. Pages mapped into the virtual memory

space of a user application are maintained on the so-called active
list, whereas available (unmapped) pages are included in the free
list. These lists are managed separately for each RackMem memory

region. A page is added to the tail of the active list (= most recently

inserted) when it is mapped into the virtual address space in reaction

to a pagefault. A page that is proactively paged out is moved to the

free list but keeps its data so that it can be brought back quickly

if referenced before being paged out. The data structure of a page

contains an 8-bit value that represents a metric for the its access

time and frequency. A background task periodically scans the active

bits of the hardware page tables. Upon updates, the 8-bit value of

a page is rotated right by one bit and the access bit of the page is

stored in the MSB (most significant bit). Interpreted as an integer,

this 8-bit value directly reflects the access time and frequency of the

page. Note that the position of pages on the active list is determined

entirely by the insertion order, i.e., the active list is not re-ordered

based on the access times of the active pages.

Reactive and proactive page reclamation. As discussed in

Section 3.1.2, RackMem employs different policies for reactive and

proactive page reclamation. If the free list is empty, a page is re-

actively reclaimed by paging its contents out to remote memory.

The latency of reactive page reclamation needs to be a short as

possible since it adds to the total pagefault handling latency. Rack-

Mem employs a constant-time algorithm that simply selects the

page located at the head, i.e., least recently accessed position of the

access list as the victim page. To avoid reactive page reclamations,

a proactive page reclamation thread is woken-up at the end of the

pagefault handler if the number of pages on the free list is lower

than a given thresholdminf r ee . Since sorting the active list based

on the page access frequencies would be too computationally ex-

pensive, RackMem employs an approximate LRU algorithm that

scans the first k ∗minf r ee pages from the head of the list (= least

recently inserted). A page is selected as a victim if its normalized

access score is below threshold t as follows

victim(page) =

yes if (p −mean)
/
stdev ≤ t

no otherwise

where p stands for the access score of the page, mean and stdev
represent the mean value and standard deviation of all active pages’

access scores, and t is the selection threshold. This heuristic avoids

sorting the active list and provides a simple way of trading compu-

tational overhead for accuracy. We empirically setminf r ee = 512,

k = 4, and t = 0.

4.2 RackMem DVS Module
The RackMem DVS kernel module provides byte-addressable disag-

gregated storage with a set of storage APIs that support allocation,

deallocation, and data transfer operations. This section presents

the implementation details of DVS.

Memory management. Similar to RVM, DVS regions are iden-

tified by a descriptor that created upon request and used to identify

the region in subsequent calls to I/O operations. Distributed storage

is allocated lazily, i.e., allocation is delayed until the first access.

DVS manages distributed storage in fixed-size slabs of 64 MB, a

value that was empirically shown to reduce the number of I/O re-

quests to remote storage while providing sufficient granularity. A

slab is allocated when its data is accessed for the first time. DVS

selects a donor node from the list of available nodes providing

backend storage using the “power of two choices” distributed load-

balancing algorithm [40] that has shown good results in practice.

The algorithm randomly picks two nodes from the node list and

selects the one that has more idle memory.

Remote memory and other storage backends. RackMem

DVS supports several remote and local storage backends. The

RDMA backend is based on LITE [52] and provides a high-per-

formance and easy-to-use networking stack for remote memory-

backed storage. RackMem’s networking module implements ab-

stractions for remote memory, state sharing, and coordinated I/O

polling to provide programmability, scalability for multiple con-

nections, and efficient I/O completion. In addition to the RDMA

backend, RackMem also implements local memory-backed storage

(that can be used to emulate pmem devices), and local file-backed

storage. The optional parallel output to local file-backed storage

provides redundancy and fault tolerance in case of a failure of a

remote storage node.

Userspace memory agent. RackMem employs a userspace

memory agent in each node that processes remote memory al-

location and deallocation requests. The agents communicate with

the storage backends in remote nodes through a custom RPC stack

over RDMA. In response to a memory allocation request, the agent

allocates a memory block of the requested size and returns the nec-

essary information to allow a remote memory to access the block

through RDMA. Similar to Infiniswap [18], the memory agents also

monitor and broadcast local memory pressure, and reclaim remote

nodes when the memory pressure of the system is too high.

Reliability. RackMem DVS supports optional data replication

to remote or local storage backends. DVS performs synchronous

write operations to equally fast or faster storage types and employs

asynchronous write duplication for slower backup storage. In case

of a failure of themain storage backend, DVS redirects the request to

the backup storage device. Faults are transparent to the application

and only noticeable by the reduced performance caused by the

slower backup storage device.

Remote node discovery and naming. Remote nodes are an-

nounced (registered) and deregistered through RackMem’s debugfs
interface. The discovery and registration is automated as an ex-

tension to the userspace memory agent. The userspace memory

agents periodically exchange messages and register newly discov-

ered nodes and deregister nodes that have disappeared. When a

node is deregistered in an orderly manner (i.e., did not fail), the DVS

module fetches all data from the leaving node and redistributes it to

other nodes. Once all remote memory has been moved away from

the leaving node, the RackMem software stack can be unloaded.

4.3 Dynamic Rebalancing of Local Memory
RackMem provides a user-level API that allows to dynamically

adjustment the local memory cache size of RackMem memory re-

gions. In addition, statistics about RVM and DVS such as the access

frequency byte of each page or the total number of pagefaults are

exposed to user-space through RackMem’s debugfs device. This

design allows for powerful memory optimizations based on the

obtained statistics. As a proof-of-concept, we have implemented

a simple local memory rebalancer in Python that periodically re-

balances the local cache size of all RackMem memory regions in

proportion to the number of active pages and pagefaults of a region.

Section 5.6 and Figure 11 discuss the effects of dynamic memory

partitioning.

4.4 RackMem for Virtual Machines
The /dev/rackmem device node provides a simple interface to uti-

lize RackMem-backed distributed memory, however, applications

need to be modified to allocate memory from RackMem. For native

applications, library interpositioning is used to intercept calls to the

dynamic memory management library and are elaborated in Sec-

tion 4.5 below. To seamlessly support Infrastructure-as-a-Service

(IaaS) virtualization where workloads are executed in isolated vir-

tual machines [2], RackMem includes a modified QEMU/KVM hy-

pervisor. The RackMem QEMU/KVM hypervisor maps the memory

of a virtual machine to a RackMem memory region instead of local

memory. The modification requires only a few additional lines of

code that open RackMem’s /dev/rackmem device and pass its de-

scriptor to the (already present) mmap() system call to setup the

memory of a VM.

4.5 Running unmodified applications
Thanks to extensive hardware support and efficient virtual machine

monitors, applications run with little performance overhead in a

VM. Nevertheless, running applications natively without modifica-

tions is an important use case especially for HPC. To provide the fast

paging and benefit of remote memory access to native applications,

RackMem includes a library that can be interpositioned to inter-

cept the dynamic memory management requests (malloc/free,
new/delete, mmap/munmap and variants) of the C standard library.

The library creates one RackMem region that serves as the heap

area for the numerous and often small dynamic memory requests.

This avoids interacting with the lower levels of RackMem and is a

design also chosen by related work [1].

4.6 Linux Demand Paging on RackMem
RackMem’s DVS layer can also serve as a storage backend to Linux’

virtual memory manager (Figure 4). We modify the implementation

of Linux’s nullb high-performance block device [15] to employ

RackMem’s DVS as its backend storage device. While such an ap-

proach forfeits the advantages of RackMem’s fast path implemented

in its virtual memory module, it enables Linux demand paging to

disaggregated memory and thus also unmodified applications to

profit from RackMem.

The implementation of Infiniswap [18] as the representative of

the state-of-the-art backend to Linux demand paging is also imple-

mented in this way. One of the main performance optimizations of

Infiniswap is its use of nullb’s per-core I/O request queue. We have

further optimized the Infiniband block device by implementing I/O

merging and by using the scatter/gather functionality of the RDMA

driver. This improved implementation of Infiniswap is used as the

main comparison target in the following evaluation section.

5 EVALUATION
RackMem has been evaluated thoroughly on real hardware (Sec-

tion 5.1) with a wide range of applications (Section 5.2) and a num-

ber of scenarios. The remainder of this section answers the follow-

ing questions:

• Can RackMem’s virtual memory improve the pagefault han-

dler throughput and reduce the tail latency? (Section 5.3)

• Does RackMem provide better performance for applications

under a disaggregated environment? (Section 5.4)

• How efficiently can RackMem utilize local memory when

co-located applications share local memory? (Section 5.6)

• Can RackMem improve performance of a job processing clus-

ter by sharing unused memory between physical machines?

(Section 5.7)

5.1 Execution Environment
All evaluations and experiments are performed on a cluster com-

posed of four physical nodes comprising a Xeon Silver 4114 pro-

cessor (10 cores / 20 threads) and 64GB of DRAM. Each machine

uses a Mellanox InfiniBand ConnectX-4 NIC (56 Gbit/s single-port

throughput) for RDMA networking and an Intel SSD SC2KB480G7R

for local storage. All nodes run Linux 5.3.9 with KVM/QEMU 2.11

for virtual machines.

Effect of RackMem Optimizations. RackMem is evaluated in

the four distinct configurations RACK, RACK.R, RACK.P, and RACK.RP
to evaluate the effect of individual optimization described in Sec-

tions 3.1 and 4.1. The details of the different configurations are

listed in Table 2.

Mean (5s) Max (5s) Stdev (5s) Mean (30s) Max (30s) Stdev (30s) Mean (60s) Max (60s) Stdev (60s) Peak RSS

Spark.PgRank 157 1421 323 947 3365 1113 2104 4181 1368 4372

Parsec.Bodytrack 98 1270 211 553 1970 629 1198 2190 787 2234

Parsec.Canneal 62 636 114 382 1289 426 822 1730 593 1845

Parsec.Dedup 213 2696 443 1064 4148 1324 2416 4734 1698 4832

Parsec.Raytrace 94 923 161 579 1696 551 1241 2389 765 2826

Parsec.Vips 175 2023 354 932 3506 1133 2105 4090 1457 4178

NPB.bt 28 752 104 184 1336 373 415 1401 549 1401

NPB.dc 46 754 125 301 1295 416 663 1399 542 1400

NPB.ft 59 1273 196 383 1871 592 881 1984 799 1983

NPB.is 60 878 159 393 1542 523 898 1736 658 1737

NPB.mg 44 536 109 288 1085 372 640 1147 436 1145

OLTPBench.tpcc 93 458 62 259 1318 317 488 1902 549 2715

OLTPBench.twitter 62 368 90 297 1346 407 567 2361 738 3421

OLTPBench.wikipedia 121 638 78 410 1514 292 766 2023 449 5199

Table 1: Working set size for 5/30/60 second windows and peak resident set size (RSS) of target applications. Values in MB.

Configuration Description

RACK base implementation

RACK.R RACK with proactive page reclamation

RACK.P RACK with prefetching

RACK.RP RACK with prefetching and proactive page reclamation

Table 2: Evaluated RackMem configurations.

Implementation Pagefault Handler Backend

LMEM Linux local memory

SSD Linux local SSD

Infiniswap Linux RDMA distributed memory

RackMem RackMem RDMA distributed memory

Table 3: Compared implementations.

Targets for comparison. RackMem is compared against two

different local backends and the state-of-the-art RDMA distributed

memory implementation from related work. Table 3 gives an over-

view of the evaluated implementations. LMEM stores and retrieves

data in the local DRAM. This approach uses pmem.io [43] to avoid

the block layer overhead of a RAM disk. SSD, on the other hand,

evaluates Linux virtual memory backed by a local SSD. Infiniswap
represents the state-of-the-art of Linux virtual memory paging to a

RDMA-backed distributed storage backend. Infiniswap is the main

competitor and comparison target to RackMem. For the comparison,

we use an improved implementation of Infiniswap (Section 4.6) be-

cause the open-sourced implementation [19] does not run correctly

on recent Linux kernels which also include patches that improve

the performance of the swap subsystem [12].

Enforcing local memory limits and sharing. To evaluate

performance with a varying local cache size, we artificially limit

the amount of local memory available to the applications. In the

case of RackMem, the amount of local cache size can be dynami-

cally set through the debugfs interface (Section 4). In scenarios that

employ Linux’s virtual memory with demand paging (LMEM, SSD,

101 102 103 104 105

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Infiniswap
RACK
RACK.R
RACK.P
RACK.RP

Figure 6: Pagefault handling overhead of RackMem.

and Infiniswap), the amount of memory available to the work-

load is limited through the use of cgroups [13] by setting the

memory_limits_in_bytes parameter to the desired value.

5.2 Target Applications
RackMem, Infiniswap, and the Linux-native targets for comparison

are evaluated with a wide range of real-world workloads including

batch-oriented and latency-critical applications. Batch-oriented ap-

plications include PageRank from Spark (PgRank) [53], CIFAR10 in-
ference from Tensorflow (Tensorflow.CIFAR10), four applications
(Canneal, Raytrace, Vips, and Dedup) from the Parsec benchmark

suite [7], and five workloads (mg, is, ft, bt, and dc) from the NASA

Parallel Benchmarks (NPB) [4]. The applications tpcc, twitter,
and wikipedia from OLTP-Bench [10] represent latency critical

workloads.

Table 1 lists the benchmarks along with the mean, the maximum,

and the standard deviation of the working set size for a sliding

window of 5, 30, and 60 seconds, respectively. The last column

shows the peak resident set size (RSS), i.e., the highest amount

of memory allocated over the entire course of execution for each

application.

30 40 50 60 70 80 90100
1.0

1.2

1.4

1.6

Sl
ow

do
w

n

(a) Tensorflow.CIFAR10

30 40 50 60 70 80 90100
1

2

4

8

Sl
ow

do
w

n

(b) Spark.PgRank

30 40 50 60 70 80 90100
1.0

1.1
1.2
1.3
1.4
1.5

Sl
ow

do
w

n

(c) Parsec.Bodytrack

30 40 50 60 70 80 90100
1
2
4
8

16
32
64

Sl
ow

do
w

n

(d) Parsec.Canneal

30 40 50 60 70 80 90100
1.0

1.2

1.4

1.6

Sl
ow

do
w

n

(e) Parsec.Raytrace

30 40 50 60 70 80 90100
1

2

4
Sl

ow
do

w
n

(f) Parsec.Vips

30 40 50 60 70 80 90100
1

2

4

Sl
ow

do
w

n

(g) Parsec.Dedup

30 40 50 60 70 80 90100
1
2
4
8

16
32
64

Sl
ow

do
w

n

(h) NPB.mg

30 40 50 60 70 80 90100
Local memory (%)

1
2
4
8

16
32

Sl
ow

do
w

n

(i) NPB.is

30 40 50 60 70 80 90100
Local memory (%)

1
2
4
8

16
32
64

Sl
ow

do
w

n

(j) NPB.ft

30 40 50 60 70 80 90100
Local memory (%)

1
2
4
8

16
32

Sl
ow

do
w

n

(k) NPB.bt

30 40 50 60 70 80 90100
Local memory (%)

1

2

4

8

Sl
ow

do
w

n

(l) NPB.dc

SSD
Infiniswap
LMEM
RACK.R
RACK.P
RACK.RP

Figure 7: Normalized execution time of batch-oriented applications under memory limits (log scale, lower is better).

5.3 Pagefault Handler Latency
The latency of handling major pagefaults by RackMem and the

Linux kernel is measured by adding tracepoints [14] to the relevant

functions in the Linux kernel and the virtual memory module of

RackMem. The PageRank benchmark Spark.PgRank is executed in

a VM with a local memory limit of 30% of its peak RSS.

The breakdown of the latencies has already been shown in Fig-

ure 3. That figure revealed the extreme tail latencies of Linux de-

mand paging with fast backends. RackMem, on the other hand, not

only achieves a 4-fold shorter latency at the 50
th

percentile, but its

tail latency increases only modestly from 7µs at 50, 12 at 95, 17 at
99, and 35µs at the 99.9 percentile. Compared to Linux, RackMem

achieves an 80-times shorter latency at the 99.9 percentile.

Figure 6 plots the cumulative distribution function (CDF) of the

pagefault handling latency Infiniswap and RackMem with differ-

ent optimizations enabled. The results clearly show the benefit

of RackMem’s latency-optimized pagefault handler compared to

Linux’s implementation. All configurations of RackMem signifi-

cantly outperform Infiniswap using the Linux pagefault handler,

both for the median latency and especially also in terms of tail

latency. Compared to the median latency of 24.4 µs in the case of

Linux/Infiniswap, the median latency of RackMem with reactive

page reclamation is over three times smaller at 6.76 µs.

The figure also visualizes the impact of proactive reclamation and

prefetching on latency. RACK.R and RACK.RP both exhibit shorter la-

tencies than RackMem without proactive page reclamation, demon-

strating the benefit of avoiding victim page selection and eviction on

the critical path. Note that prefetching not only leads to to shorter

latencies but also increases tail latency compared to no prefetching.

This is visible in the CDF from Figure 6: Almost all pagefaults under

RackMem without optimizations (RACK) exhibit latencies between
10 and 20 µs . With prefetching (RACK.P), the fastest 25 percent of
pagefaults experience a shorter latency, and the 40 percent of the

tail latencies are longer compared to RACK (note the crossover points
of the two policies in the CDF graph). The reason for this behavior

is as follows. Prefetched pages are not directly mapped, but added to

the free list. If a fault occurs on such a page (prefetch hit), the page

is moved to the active list and mapped into the process’ address

space without causing I/O operations, yielding a larger number of

pagefaults with short latencies. The longer tail, on the other hand,

is caused by prefetching itself which is performed synchronously

at the end of the pagefault handler (Figure 5).

5.4 Single Application Performance
This section analyzes how RackMem improves end-to-end applica-

tion performance for batch-oriented and latency-critical workloads.

5.4.1 Batch-oriented Applications. The sensitivity of an application
with regards to memory disaggregation is determined by measuring

the relative slowdown while restricting the available local memory

from 100 percent (baseline, local performance) down to 30 percent.

Figure 7 plots the normalized execution times of the batch-

oriented applications under the different configurations. The results

demonstrate that RackMem’s optimized virtual memory directly

30 40 50 60 70 80 90 100
Local Memory (%)

1

2

4

8

16

32

Sl
ow

do
w

n

SSD
Infiniswap
LMEM
RACK.R
RACK.P
RACK.RP

Figure 8: Averaged normalized execution time of all batch-
oriented applications.

translates to end-to-end application performance gains under mem-

ory disaggregation. Interestingly, for most applications RackMem

even outperforms LMEM that uses the much faster local memory

as a paging device. This result again implies that Linux’s virtual

memory implementation becomes the main bottleneck for fast stor-

age devices. SSD and Infiniswap show a lower tolerance under

intensive paging scenarios, and the benefit of utilizing additional

memory is lost by the severe performance degradation.

Looking at the effect of RackMem’s page reclamation and prefetch

optimization in Figure 7, in most cases, the benefits are not clearly

visible. This implies that RackMem’s efficient implementation of

virtual memory contributes the most to the performance improve-

ment. The results in Figure 7 also reveal that the proactive page

reclamation optimization clearly improves application performance

under intensive disaggregation scenarios and that the prefetch op-

timization contributes more than proactive reclamation when ap-

plications exhibit sequential memory access patterns such as in

Parsec.Dedup and Parsec.Raytrace. The aggregated results over

all batch-oriented applications in Figure 8 show the benefits of

RackMem over the other approaches and the effect of RackMem’s

optimizations. At 30% local memory, the average normalized ex-

ecution time for RACK.RP, RACK.R, RACK.P are 3.29, 3.44, and 3.89,

respectively, demonstrating that both individual optimizations con-

tribute to RACK.RP, the best performing configuration.

5.4.2 Latency-oriented Applications. For latency-oriented applica-

tions, we measure the transaction latencies of the OLTP workloads

at 30% of the peak RSS available as local memory. Figure 10 plots the

function 1−CDF in log scale to effectively visualize the tail latency.

We compare the baseline (native execution in local memory) with

RACK.RP, Infiniswap, and SSD.
The transaction latencies of Tpcc, Twitter, and Wikipedia from

OLTP-Bench are shown in Figure 10. The result demonstrates

the feasibility of deploying memory disaggregation in an environ-

ment running latency-critical applications. For OLTPBench.tpcc
and OLTPBench.wikipedia, RACK.RP shows great tolerance even

under an intensive memory disaggregation setup at a local memory

limit of 30% w.r.t. RSS. For OLTPBench.tpcc, the 99th percentile

latencies of BASELINE, RACK.RP, Infiniswap, and SSD are 246ms,

257ms, 348ms, and 487ms, respectively. OLTPBench.Twitter, which

30% 40% 50% 60% 70% 80% 90%
Local Memory (%)

0

250

500

750

1000

Pa
gi

ng
 T

hr
ou

gh
pu

t (
M

B
/s

) Mean
Median

Figure 9: RDMA NIC utilization of RackMem.

has a relatively higher throughput than the other two workloads, is

a difficult benchmark under memory disaggregation. Nevertheless,

Rack.RP is able to significantly reduce the tail latency compared to

Infiniswapwhich shows the benefit of RackMem’s virtual memory

for latency-critical workloads. In OLTPBench.Twitter case, finally,
the 99th percentile latency of BASELINE, RACK.RP, Infiniswap, and
SSD are 5.5ms, 12.4ms, 25.7ms, and 67.3ms, respectively.

5.5 Network Bandwidth Analysis
A common concern of distributed memory is network bandwidth

utilization. Frequent accesses to remote memory can potentially

saturate a node’s network bandwidth and cause prolonged pagefault

handling latencies. While saturation can occur at the recipient

(local) and the remote memory donor nodes, the network of the

local node is more likely to be congested under heavy loads because

remote memory is distributed to several donor nodes (Section 4.2).

Figure 9 plots the network bandwidth utilization of RackMem

with prefetch and reclaim activated (RACK.RP) for all applications
from Figure 7. The boxplot visualizes the bandwidth distribution at

one-second intervals for each memory configuration. The black and

red lines indicate the mean and median values, the boxes represent

the 25
th

and 75th percentile, and the bottom/top whiskers show

the 5
th

and 95
th

percentile of the distribution. The results show an

exponential increase in the consumed network bandwidth as the

local memory limit is lowered. At the 30% local memory limit, the

95
th

percentile bandwidth of a single application reaches 1.15 GB/s.

With HDR InfiniBand speeds reaching 200 Gb/s (24 GB/s) [39], net-

work bandwidth only gets saturated when 20 parallel applications

running at a 30% local memory limit simultaneously reach peak

network bandwidth utilization. The FDR InfiniBand setup of our

cluster (56 Gb/s or 6.5 GB/s) can support five parallel applications

a 30% local memory without suffering from bandwidth saturation.

RackMem has the ability to automatically re-balance local mem-

ory to the co-located applications (Section 5.6); as a consequence, it

is unlikely that co-located applications all consume peak network

bandwidth utilization in a realistic scenario. Indeed, the analysis

in Section 2.2 showed that RackMem achieves close to optimal

performance at a 50% local memory ratio even without automatic

re-balancing.

103 104 105 106

Latency (s)

10 1

10 2

10 3

10 4

1-
C

D
F

(a) OLTPBench.TPCC

Baseline
RACK.RP
Infiniswap
SSD

102 103 104 105 106 107

Latency (s)

10 1

10 2

10 3

10 4

10 5

1-
C

D
F

(b) OLTPBench.Twitter

103 104 105 106

Latency (s)

10 1

10 2

10 3

10 4

10 5

1-
C

D
F

(c) OLTPBench.Wikipedia

Figure 10: Distribution of transaction latency of OLTP-Bench (log scale, lower is better).

0 500 1000 1500 2000
Elapsed Time (s)

0

2

4

6

R
SS

 (G
B

)

(a) RackMem (MM Off)

VM0
VM1
VM2
VM3

0 500 1000 1500 2000
Elapsed Time (s)

0

2

4

6

R
SS

 (G
B

)
(b) RackMem (MM On)

0 500 1000 1500 2000
Elapsed Time (s)

0

2

4

6

R
SS

 (G
B

)

(c) Linux (Infiniswap)

Figure 11: Comparison of dynamic memory balancing of Linux and RackMem userspace memory manager.

5.6 Dynamic Local Memory Partitioning
Multiple applications are often co-located on the same physical

machine to improve resource utilization. An important and inter-

esting problem in such a scenario is to allocate the right amount of

resources to the different applications. Modern data center applica-

tions exhibit a dynamically changing working set which makes it

difficult to distribute resources statically. This section evaluates the

dynamic memory re-allocator of RackMem (Section 4.3) that redis-

tributes the amount of local memory in proportion to the number

of pagefaults generated by the concurrently running applications

over a 60-second window.

For the evaluation, four virtual machines (VM) with 4 VCPUs

and 8 GB of RAM are co-located. Each VM serially executes 20

random batch processing workloads until completion. The total

available local memory is limited to 6 GB, i.e., 1.5 GB per VM with

an equal partitioning. This setup is executed with RackMem’s static

and dynamic partitioning and compared to Infiniswap. Since Infin-

iswap does support per-application memory limits, the four VMs

are executed in a cgroup with 6 GB or RAM. Measured performance

metrics are the mean job completion time and the total time to com-

pletion defined by the point in time when all VMs have completed

their workloads.

Figure 11 plots the results. Figure 11 (a) shows the results for

RackMem without a dynamic memory manager. Once allocated

memory is never rebalanced. All VMs receive a similar amount

of memory; the time to completion is 1’986s. Figure 11 (b) plots

the results with RackMem’s dynamic memory repartitioning. VMs

are assigned more or less memory depending on their number of

pagefaults. We observe that all VMs exhibit different phases and

that the phases of high memory requirements do not necessarily

occur simultaneously. This allows RackMem’s dynamic memory

partitioner to allocate more memory to VMs when required. VM

3, for example, is assigned up to 3.5 GB at the 600 second mark.

With memory re-balancing, the time to completion is 1’873s, a 5.6%

reduction compared to the static allocation under RackMem. Finally,

Figure 11 (c) shows the result for Infiniswap with a total time to

completion of 2’062s. The mean job completion times of RackMem

with/without dynamic repartitioning and Infiniswap are 354s, 362s,

and 400s, respectively.

5.7 Job Processing on a Real Cluster
The final experiment validates the simulated results of the job queue

from Section 2.2 and Figure 2. The cluster from Section 5.1 is setup

to processes 100 batch workloads selected randomly from the 12

workloads presented in Section 5.4.1. Each node is configured to

utilize only 12.5% of its local memory and request remote memory

if the running jobs exceed the local memory limit. Jobs are sched-

uled with the same conditions as the simulation from Section 2.2.

The evaluation measures the mean job turnaround time for three

different configurations RACK.RP, Infiniswap, and SSD.
Figure 12 (a) shows the CDF of the job turnaround times. The abil-

ity of memory sharing beyond physical limits improves the job pro-

cessing time for both RACK.RP and Infiniswap. The mean job turn-

around times of RACK.RP, Infiniswap, and SSD are 153.0s, 184.9s,
and 260.5s, respectively. Figure 12 (b) shows the aggregatedmemory

utilization of the cluster during the experiment. Both RackMem and

0 500 1000
Job Turnaround Time (secs)

0.0

0.5

1.0

C
D

F

(a) CDF of the job turnaround time

RackMem
Infiniswap
SSD

0 500 1000 1500
Elapsed Time (secs)

0

25

50

75

M
em

. U
til

iz
at

io
n

(%
)

(b) Cluster Memory Utilization

0 500 1000 1500
Elapsed Time (secs)

0
10

0
k

20
0

k
Th

ro
ug

hp
ut

 (p
ag

es
/s

)

(c) Paging Activity (30s moving average)

Figure 12: Total turnaround time of batch job processing.

Infiniswap aggressively utilize remote memory and achieve a much

higher memory utilization than demand paging to local storage

(SSD). Figure 12 (c) plots the aggregated paging throughput of the

cluster. The figure plots the 30-second moving average at one sec-

ond intervals to remove noise and emphasize the changing phases.

Except for a short period at the beginning, RackMem consistently

handles more remote page requests than Infiniswap or Linux until

a steady-state is achieved. Thanks to RackMem’s ability to utilize

remote memory more aggressively, it achieves higher throughput

and shorter job processing times.

6 RELATEDWORK
Accessing remote memory over a fast network is not an entirely

new idea, and a number of works address the different aspects of

remote memory systems.

Hardware support formemory disaggregation. Several works
present specialized hardware to transparently access remote mem-

ory without the intervention of software pagefault handlers. Lim

et al. [28, 29] proposed a new architecture that transparently uti-

lized a pool of memory blades with a modified hypervisor. The

authors show that simple modifications to the hardware, combined

with matching software, can significantly improve the memory

utilization in a cluster. The necessity for custom hardware is the

main limitation of this work. More recently, Katrinis et al. [23]
have presented a working prototype of hardware disaggregated

memory. While the work represents a promising design for future

data centers, it will likely take years until a commercial product

is available and integrated in data centers – a time during which

software-based disaggregated memory is a viable and attractive

solution.

Demand paging to remote memory. Using remote memory

as an extension of local memory has a long history. Newhall et
al. [41] proposed Nswap, a concept and implementation of a remote

swap system. The authors showed that paging to remote memory

has a performance advantage over swapping to a hard disk thanks

to the smaller latency of the network. The use of advanced commer-

cial networking devices such as Infiniband with RDMA has been

explored by Liang et al. [27]. RDMA and the much faster Infiniband

network significantly improve the performance of remote paging

and simplify the software implementation. More recently, Gao et
al. [16] have analyzed the feasibility of resource disaggregation

and presented a comprehensive analysis of network requirements.

The analysis shows that available high-speed network devices offer

sufficient performance to realize memory disaggregation with an

efficient software implementation. Gu et al. [18] presented Infin-

iswap, a practical implementation of a distributed remote swap

device. Infiniswap uses unused memory in the cluster as a swap

space for local memory. Fault tolerance is achieved by simultane-

ously writing to remote storage and a local disk; if the remote node

becomes unavailable, the data is recovered from the disk. Similar to

our work, Infiniswap employs the power-of-two-choices algorithm

to select a remote node. The work of Koh et al. [25] is closest to
RackMem. The authors presented a custom swap layer over RDMA

implemented in the KVM/QEMU hypervisor. The custom swap

layer outperforms Linux’s swapping over RDMA thanks to scalable

data structures and elastic block management for prefetching. The

contribution of RackMem over this work is the design of an efficient

remote paging module with well-designed and powerful interfaces.

With modifications to only a few lines of code in the KVM/QEMU

hypervisor, virtual machines in data centers are able to benefit from

RackMem’s disaggregated memory and advanced cache manager.

7 CONCLUSION
This paper has presented RackMem, an efficient implementation of

disaggregated memory implemented and evaluated with a recent

Linux kernel. RackMem exposes distributed memory through a

simple device interface. Local memory is used as a cache. RackMem

allows dynamic and detailed configuration of its operations at run-

time from user-space, rendering it an ideal candidate to implement

user-level and application-specific caching policies. Experiments

with a wide range of real-world data center applications show the

benefits of RackMem compared to the state-of-the-art RDMA pag-

ing and local paging to SSDs using Linux’s virtual memory demand

paging.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation

of Korea (NRF) funded by the Korean government, in part, by

grants NRF-2015K1A3A1A14021288, 2016R1A2B4009193, by the

BK21 Plus for Pioneers in Innovative Computing (Dept. of Com-

puter Science and Engineering, SNU, grant 21A20151113068), and

by the Promising-Pioneering Researcher Program of Seoul National

University in 2015. ICT at Seoul National University provided re-

search facilities for this study.

REFERENCES
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel

Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrahmanyam, Lalith

Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018. Re-

mote regions: a simple abstraction for remote memory. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18). USENIX Association, 775–787.

https://www.usenix.org/conference/atc18/presentation/aguilera

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,

Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,

and Michael Wei. 2017. Remote Memory in the Age of Fast Networks. In Pro-
ceedings of the 2017 Symposium on Cloud Computing (SoCC ’17). ACM, 121–127.

https://doi.org/10.1145/3127479.3131612

[3] Alibaba. 2018. Alibaba Production Cluster Trace Data. https://github.com/alibaba/

clusterdata.

[4] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter,

Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S

Schreiber, et al. 1991. The NAS parallel benchmarks. International Journal of
High Performance Computing Applications 5, 3 (1991), 63–73.

[5] Jeff Barr. 2019. EC2 High Memory Update âĂŞ New 18 TB and 24 TB In-

stance. https://aws.amazon.com/ko/blogs/aws/ec2-high-memory-update-new-

18-tb-and-24-tb-instances/.

[6] M. Bielski, Ilias Syrigos, Kostas Katrinis, Dimitris Syrivelis, Andrea Reale, Dimitris

Theodoropoulos, Nikolaos Alachiotis, Dionisios Pnevmatikatos, H. E. Pap, George

Zervas, Vaibhawa Mishra, A. Saljoghei, A. Rigo, J. F. Zazo, Sergio Lopez-Buedo,

Marti Torrents, Ferad Zyulkyarov, M. Enrico, and O. G. de Dios. 2018. dReD-

Box: Materializing a full-stack rack-scale system prototype of a next-generation

disaggregated datacenter. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE). 1093–1098. https://doi.org/10.23919/DATE.2018.8342174

[7] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[8] Brad Calder and Bart Sano. 2019. Introducing Compute- and Memory-Optimized

VMs for Google Compute Engine. https://cloud.google.com/blog/products/

compute/introducing-compute-and-memory-optimized-vms-for-google-

compute-engine.

[9] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient

and QoS-aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, 127–144. https://doi.org/10.1145/2541940.2541941

[10] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-

lational Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013), 277–288. https:

//doi.org/10.14778/2732240.2732246

[11] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.

Beyond Processor-centric Operating Systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV). USENIX Association. https://www.usenix.org/

conference/hotos15/workshop-program/presentation/faraboschi

[12] Linux Foundation. 2019. mm, swap: use rbtree for swap extent.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=4efaceb1c5f8136d5fec3f26549d294b8e898bd7.

[13] Linux Foundation. 2020. cgroups(7) - Linux manual page. http://man7.org/linux/

man-pages/man7/cgroups.7.html.

[14] Linux Foundation. 2020. Linux kernel documentation. https://www.kernel.org/

doc/Documentation/trace/tracepoints.txt.

[15] Linux Foundation. 2020. Null block device driver. https://www.kernel.org/doc/

html/latest/block/null_blk.html.

[16] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,

Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-

ments for Resource Disaggregation. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’16). USENIX Association,

249–264. http://dl.acm.org/citation.cfm?id=3026877.3026897

[17] Google. 2011. Google Production Cluster Trace Data. https://github.com/google/

cluster-data.

[18] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.

Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, 649–667. https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/gu

[19] Infiniswap 2017. Infiniswap: Efficient Memory Disaggregation with Infiniswap.

https://github.com/SymbioticLab/infiniswap.

[20] Intel. 2018. Intel Rack Scale Design Architecture. https://www.intel.com/

content/dam/www/public/us/en/documents/white-papers/rack-scale-design-

architecture-white-paper.pdf.

[21] Adam Jacobs. 2009. The pathologies of big data. Commun. ACM 52, 8 (2009),

36–44.

[22] Karthik Kambatla, Giorgos Kollias, Vipin Kumar, and Ananth Grama. 2014. Trends

in big data analytics. J. Parallel and Distrib. Comput. 74, 7 (2014), 2561 – 2573.

https://doi.org/10.1016/j.jpdc.2014.01.003 Special Issue on Perspectives on Parallel

and Distributed Processing.

[23] Kostas Katrinis, Dimitris Syrivelis, Dionisios Pnevmatikatos, George Zervas,

Dimitris Theodoropoulos, Iordanis Koutsopoulos, K. Hasharoni, Daniel Raho,

Christian Pinto, F. Espina, Sergio Lopez-Buedo, Q. Chen, Mario D. Nemirovsky,

Damian Roca, H. Klos, and T. Berends. 2016. Rack-scale disaggregated cloud data

centers: The dReDBox project vision. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE). 690–695.

[24] Aniraj Kesavan, Robert Ricci, and Ryan Stutsman. 2017. To Copy or Not to Copy:

Making In-Memory Databases Fast on Modern NICs. In Data Management on
New Hardware. Springer International Publishing, 79–94.

[25] Kwangwon Koh, Kangho Kim, Sunghyub Jeon, and Jaehyuk Huh. 2018. Disag-

gregated Cloud Memory with Elastic Block Management. IEEE Trans. Comput.
(2018), 1–1. https://doi.org/10.1109/TC.2018.2851565

[26] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw

Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,

Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.

2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19). ACM, New York,

NY, USA, 317–330. https://doi.org/10.1145/3297858.3304053

[27] Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. 2005. Swapping

to Remote Memory over InfiniBand: An Approach using a High Performance

Network BlockDevice. In 2005 IEEE International Conference on Cluster Computing.
1–10. https://doi.org/10.1109/CLUSTR.2005.347050

[28] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.

Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion

and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA âĂŹ09). Association for Computing

Machinery, New York, NY, USA, 267âĂŞ278. https://doi.org/10.1145/1555754.

1555789

[29] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,

Parthasarathy Ranganathan, and Thomas F. Wenisch. 2012. System-level

implications of disaggregated memory. In IEEE International Symposium on
High-Performance Comp Architecture. 1–12. https://doi.org/10.1109/HPCA.2012.

6168955

[30] H. Litz, M. Thuermer, and U. Bruening. 2010. TCCluster: A Cluster Architecture

Utilizing the Processor Host Interface as a Network Interconnect. In 2010 IEEE
International Conference on Cluster Computing. 9–18. https://doi.org/10.1109/

CLUSTER.2010.37

[31] Feilong Liu, Lingyan Yin, and Spyros Blanas. 2017. Design and Evaluation

of an RDMA-aware Data Shuffling Operator for Parallel Database Systems. In

Proceedings of the Twelfth European Conference on Computer Systems (EuroSys
’17). ACM, 48–63. https://doi.org/10.1145/3064176.3064202

[32] Yin Lu, Yong Chen, Yu Zhuang, Jialin Liu, and Rajeev Thakur. 2015. Collective

input/output under memory constraints. International Journal of High Perfor-
mance Computing Applications 29, 1 (2015), 21–36. https://doi.org/10.1177/

1094342014561696

[33] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-

enabled Distributed Persistent Memory File System. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association, 773–785. https:

//www.usenix.org/conference/atc17/technical-sessions/presentation/lu

[34] LWN.net. 2016. Making swapping scalable [LWN.net]. https://lwn.net/Articles/

704478/.

[35] LWN.net. 2017. mm, swap: VMA based swap readahead [LWN.net]. https:

//lwn.net/Articles/716296/.

[36] LWN.net. 2017. The next steps for swap [LWN.net]. https://lwn.net/Articles/

717707/.

[37] Hasan Maruf and Mosharaf Chowdhury. 2019. Effectively Prefetching Remote

Memory with Leap. (11 2019).

[38] Mellanox. 2016. Mellanox Products: ConnectXÂő-5 Single/Dual-Port Adapter

supporting 100Gb/s with VPI. http://www.mellanox.com/page/products_dyn?

product_family=258&mtag=connectx_5_vpi_card.

[39] Mellanox. 2020. Introducing 200G HDR InfiniBand Solutions.

https://www.mellanox.com/pdf/whitepapers/WP_Introducing_200G_HDR_

InfiniBand_Solutions.pdf.

[40] Michael Mitzenmacher. 2001. The power of two choices in randomized load

balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (Oct 2001),
1094–1104. https://doi.org/10.1109/71.963420

[41] Tia Newhall, Sean Finney, Kuzman Ganchev, andMichael Spiegel. 2003. Nswap: A

Network SwappingModule for Linux Clusters. In Euro-Par 2003 Parallel Processing.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1160–1169.

[42] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagimont. 2018.

Welcome to Zombieland: Practical and Energy-efficient Memory Disaggregation

in a Datacenter. In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18).
ACM, Article 16, 12 pages. https://doi.org/10.1145/3190508.3190537

[43] pmem.io. 2020. Persistent Memory Programming. http://pmem.io/.

https://www.usenix.org/conference/atc18/presentation/aguilera
https://doi.org/10.1145/3127479.3131612
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://aws.amazon.com/ko/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/ko/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://doi.org/10.23919/DATE.2018.8342174
https://cloud.google.com/blog/products/compute/introducing-compute-and-memory-optimized-vms-for-google-compute-engine
https://cloud.google.com/blog/products/compute/introducing-compute-and-memory-optimized-vms-for-google-compute-engine
https://cloud.google.com/blog/products/compute/introducing-compute-and-memory-optimized-vms-for-google-compute-engine
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4efaceb1c5f8136d5fec3f26549d294b8e898bd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4efaceb1c5f8136d5fec3f26549d294b8e898bd7
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/html/latest/block/null_blk.html
https://www.kernel.org/doc/html/latest/block/null_blk.html
http://dl.acm.org/citation.cfm?id=3026877.3026897
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://github.com/SymbioticLab/infiniswap
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://doi.org/10.1016/j.jpdc.2014.01.003
https://doi.org/10.1109/TC.2018.2851565
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1109/CLUSTR.2005.347050
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/HPCA.2012.6168955
https://doi.org/10.1109/HPCA.2012.6168955
https://doi.org/10.1109/CLUSTER.2010.37
https://doi.org/10.1109/CLUSTER.2010.37
https://doi.org/10.1145/3064176.3064202
https://doi.org/10.1177/1094342014561696
https://doi.org/10.1177/1094342014561696
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://lwn.net/Articles/704478/
https://lwn.net/Articles/704478/
https://lwn.net/Articles/716296/
https://lwn.net/Articles/716296/
https://lwn.net/Articles/717707/
https://lwn.net/Articles/717707/
http://www.mellanox.com/page/products_dyn?product_family=258&mtag=connectx_5_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=258&mtag=connectx_5_vpi_card
https://www.mellanox.com/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://www.mellanox.com/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://doi.org/10.1109/71.963420
https://doi.org/10.1145/3190508.3190537
http://pmem.io/

[44] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and

John K. Ousterhout. 2011. It’s Time for Low Latency. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems (HotOS’13). USENIX
Association, 11–11. http://dl.acm.org/citation.cfm?id=1991596.1991611

[45] Iman Sadooghi, Jesus Hernandez Martin, Tonglin Li, Kevin Brandstatter, Ketan

Maheshwari, Tiago Pais Pitta De Lacerda Ruivo, Gabriele Garzoglio, Steven Timm,

Yong Zhao, and Ioan Raicu. 2017. Understanding the Performance and Potential

of Cloud Computing for Scientific Applications. IEEE Transactions on Cloud
Computing 5, 2 (2017), 358–371. https://doi.org/10.1109/TCC.2015.2404821

[46] Corey Sanders. 2018. Why you should bet on Azure for your infrastructure

needs, today and in the future. https://azure.microsoft.com/en-us/blog/why-you-

should-bet-on-azure-for-your-infrastructure-needs-today-and-in-the-future/.

[47] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS:

A disseminated, distributed OS for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
69–87.

[48] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed Shared Persis-

tent Memory. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC
’17). ACM, 323–337. https://doi.org/10.1145/3127479.3128610

[49] Avinash Sodani. 2011. Race to exascale: Challenges and opportunities. MICRO
2011 Keynote (2011).

[50] Petter Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. 2014. Heca-

tonchire: Towards Multi-host Virtual Machines by Server Disaggregation. In

Euro-Par 2014: Parallel Processing Workshops. Springer International Publishing,
519–529.

[51] Top500.org. 2020. TOP500 Supercomputer Sites. https://top500.org/.

[52] Shin-Yeh Tsai and Yiying Zhang. 2017. LITE Kernel RDMA Support for Datacenter

Applications. In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). ACM, 306–324. https://doi.org/10.1145/3132747.3132762

[53] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10).
USENIX Association, 10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113

[54] Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Paul M. Carpenter, Petar

Radojkovic, Eduard Ayguade, Hyunsung Shin, Jongpil Son, and Sally A. McKee.

2017. Main memory in HPC: Do we need more or could we live with less? ACM
Transactions on Architecture and Code Optimization 14, 1 (2017), 1–26. https:

//doi.org/10.1145/3023362

http://dl.acm.org/citation.cfm?id=1991596.1991611
https://doi.org/10.1109/TCC.2015.2404821
https://azure.microsoft.com/en-us/blog/why-you-should-bet-on-azure-for-your-infrastructure-needs-today-and-in-the-future/
https://azure.microsoft.com/en-us/blog/why-you-should-bet-on-azure-for-your-infrastructure-needs-today-and-in-the-future/
https://doi.org/10.1145/3127479.3128610
https://top500.org/
https://doi.org/10.1145/3132747.3132762
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://doi.org/10.1145/3023362
https://doi.org/10.1145/3023362

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Provisioning in HPC Data Centers
	2.2 Resource Disaggregation to the Rescue
	2.3 Limitations of Linux's Demand Paging

	3 RackMem Design
	3.1 RackMem Virtual Memory
	3.2 RackMem Distributed Virtual Storage

	4 Implementation
	4.1 RackMem Virtual Memory Module
	4.2 RackMem DVS Module
	4.3 Dynamic Rebalancing of Local Memory
	4.4 RackMem for Virtual Machines
	4.5 Running unmodified applications
	4.6 Linux Demand Paging on RackMem

	5 Evaluation
	5.1 Execution Environment
	5.2 Target Applications
	5.3 Pagefault Handler Latency
	5.4 Single Application Performance
	5.5 Network Bandwidth Analysis
	5.6 Dynamic Local Memory Partitioning
	5.7 Job Processing on a Real Cluster

	6 Related Work
	7 Conclusion
	References

