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Abstract. Live migration of virtual machines (VMs) enables maintenance, load
balancing, and power management in data centers. The cost of live migration on
several key metrics combined with strict service-level objectives (SLOs), how-
ever, typically limits its practical application to situations where the underly-
ing physical host has to undergo maintenance. As a consequence, the potential
benefits of live migration with respect to increased resource usage and lower
power consumption remain largely untouched. In this paper, we argue that live
migration-aware SLOs combined with smart live migration algorithm selection
provides an economically viable model for live migration in data centers. Based
on a model predicting key parameters of VM live migration, an optimization al-
gorithm selects the live migration technique that is expected to meet client SLOs
while at the same time to optimize target metrics given by the data center oper-
ator. A comparison with the state-of-the-art shows that the presented guided live
migration technique selection achieves significantly fewer SLO violations while,
at the same time, minimizing the effect of live migration on the infrastructure.
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1 Introduction

Millions of virtual machines run in data centers of large Infrastructure as a Service
(IaaS) providers. Virtualization enables service providers to achieve a higher utiliza-
tion of their infrastructure whilst providing isolation between the multiple co-located
tenants [4]. A key technology to achieve high availability and resource utilization in
warehouse-scale computing (WSC) is live migration. Live migration transfers a run-
ning VM from one host to another and enables operators to balance the load between
hosts, to perform maintenance on hard- and software, and to reduce the data center’s en-
ergy consumption by consolidating VMs onto fewer machines. Various cloud resource
management systems propose employing live migration for consolidation and load bal-
ancing [35,29,13,26], however, live migration in commercial data centers is still mostly
used for maintenance only. Google, for example, migrates over a million VMs every
month to perform maintenance on hard- and software in its data centers [28,11].

Despite the economical benefits of reduced energy consumption and higher resource
utilization, a number of reasons wide-spread adoption of live migration a means to
load balancing and power savings in data centers. First, live migration causes a small
performance reduction of the migrated VM. This makes it difficult to fulfill end-user
SLOs guaranteeing a certain throughput and high availability. Second, live migration
increases the network traffic and CPU load in the data center. Violated SLOs and ad-
ditional resource usage both incur a short-term financial cost to the operators while
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Fig. 1. High-level organization of the presented framework.

the mid- to long-term benefits are harder to quantify [34]. The resulting immobility of
VMs is one of the root causes for resource underutilization in data centers as is evident
from Alibaba and Google clusters utilization data that shows large opportunities for
improvement [4,2,12].

This paper makes the case that new SLOs that take into account the characteristics
of live migration combined with smart live migration open new opportunities for eco-
nomical live migration in WSC. SLOs that permit a certain performance degradation
enable live migration of such VMs without incurring a financial penalty. This allows
data center operators to apply live migration more frequently and achieve higher re-
source utilization and a lower total cost of ownership (TCO). This, in turn, allows for
new VM pricing models and increased competitiveness.

The main obstacle to live migration-aware SLOs the inability to accurately quantify
the effect of live migration on the VM and the data center. The performance degradation
of a VM during live migration depends on multiple factors that include the employed
live migration technique, the size of the VM, and the workload running in the VM. Sim-
ilarly, the effect on resources of the data center such as consumed network bandwidth
and CPU utilization needs to be quantifiable.

To this end, this work presents a framework for economic live migration in data
centers; Figure 1 shows its high-level organization. At the core of the framework is a
model that predicts several key metrics related to live migration under consideration of
the live migration technique, the VM, and the data center. The framework considers the
SLOs of the VMs and migrates VMs whose migration is expected to fulfill the SLOs
of all involved VMs. The model is able to predict five key metrics for the nine most
common live migration techniques in a heterogeneous data center. The proposed live
migration-aware SLOs define the maximum duration and performance degradation an
end-user is willing to accept during live migration. The presented framework is evalu-
ated in a small heterogeneous data center. The framework is able to migrate VMs with
far fewer SLO violations than any single static live migration technique, demonstrating
that, when applied judiciously, live migration has the potential to lead to more flexibil-
ity, higher resource utilization, and a lower TCO in commercial data centers.

The remainder of this paper is organized as follows. Section 2 discusses live mi-
gration and its metrics. Sections 3 and 4 presents the model and the end-user SLOs.
Section 5 details the experimental setup and evaluates the presented framework. Sec-
tion 6 discusses relevant related work, and Section 7 concludes this paper.
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2 Background
2.1 The Anatomy of Live Migration

Migrating a VM from one physical host to another requires transferring the entire
volatile state of the VM. The volatile state of a VM includes its memory contents, the
execution context, and device buffers. With typical VM memory sizes from four to tens
of gigabytes the transfer of the main memory dominates the migration overhead [7].

Live migration can be divided into three distinct phases (Figure 2): prepare, stop-
and-copy, and resume. In the prepare phase, part of the VM’s memory is transferred to
the destination host, while the VM keeps running on the source. It is possible that the
VM experiences a performance degradation that is caused by the additional resource
consumption of the migration technique. The prepare phase is succeeded by the stop-
and-copy phase during which the VM is completely stopped and the execution control is
transferred from the source to the destination host. In the resume phase, finally, the VM
is restarted on the destination and the remaining volatile state is fetched from the source
host. Some migration techniques do not copy the entire volatile state in the prepare
phase. This can lead to a severe performance degradation during the resume phase.

2.2 Live Migration Techniques

Live migration techniques can be classified by the point in time when the memory of a
VM is transferred. One extreme is to send all data before the VM instance is moved to
the destination host; this technique is called pre-copy [6]. Since the VM keeps running
while the memory is being transferred, dirtied memory pages (i.e., pages that are modi-
fied while a transfer is ongoing) need to be copied more than once. Pre-copy iteratively
copies dirtied memory pages to the destination host until the amount of dirtied pages
reaches a given threshold. The VM is then stopped on the source host and the remain-
ing dirty pages and the VM context are transferred to the destination. Finally, the VM
is restarted on the destination host. Since the entire volatile state of the VM has been
transferred, pre-copy has a very short resume phase.

At the other end of the spectrum lies post-copy [14] that immediately transfers the
minimal context and restarts the VM on the destination host. The VM’s main memory
is fetched in the background and on-demand from the source host. Post-copy transfers
each memory page exactly once, however, the long resume phase can lead to severe
performance degradation in the VM. As usual in engineering, the optimum is seldom
found at the extremes; several hybrid live migration techniques have been proposed that
split the transfer of the volatile state between the prepare and the resume phase.
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Abbreviation Description
PRE pre-copy
POST post-copy
DLTC pre-copy with delta compression
DTC pre-copy with data compression
DLTC.DTC pre-copy with delta compression followed by data compression
THR throttled pre-copy
THR.DLTC throttled pre-copy with delta compression
THR.DTC throttled pre-copy with data compression
THR.DLTC.DTC throttled pre-copy with delta compression followed by data compression

Table 1. Evaluated migration techniques

In addition to the decision when to transfer the volatile state, there exist several or-
thogonal optimizations that improve the performance of live migration. CPU throttling
limits the performance of the VM’s CPUs to reduce the rate of dirtied memory. While
this optimization can improve the performance of the pre-copy technique, it may also
lead to significant performance degradation in the VM. Data compression is another
optimization aiming at reducing the amount data to be transferred. Typically, two vari-
ants are supported: data compression and delta compression. Data compression uses a
standard block compression algorithm to compress the data before sending it over the
network. Data compression works especially well if the entropy of the data is low, how-
ever, the computational overhead incurred by the compression algorithm may cause a
performance reduction of the migrated and the co-located VMs. Delta compression tries
to solve this problem by using the computationally light delta compression algorithm.
The significant memory requirements of this algorithm may prohibit its application in
situations when live migration is initated because the source host is low on memory.

This paper explores the two basic algorithms, pre-copy and post-copy, and seven
combinations of pre-copy with the optimizations CPU throttling, data compression, and
data compression as shown in Table 1. The presented framework is implemented in the
KVM/QEMU virtual machine manager (VMM) [5] that supports all of these algorithms
out-of-the-box. A number of alternative optimization techniques for live migration have
been proposed [15,17,19,20,23,31] but are not considered in this work because they are
not supported by the virtualization layer employed in industrial data centers.

3 Live Migration Model

The model employed in this paper is able to predict the performance of several live mi-
gration metrics (Section 3.1) for each of the nine live migration techniques (Section 2.2)
for a given VM. The model takes as input the relevant parameters of the workload run-
ning inside a VM, information about the involved source and destination hosts, and
the available network bandwidth. These parameters are gathered prior to the migration
during a brief profiling phase. The model extends the state-of-the-art in live migration
modeling [18]. In contrast to [18], the presented model has been extended to support
heterogeneous physical nodes and more live migration techniques. The extended model
distinguishes between different CPU vendors and types, and the CPU clock frequency.



Towards Economical Live Migration in Data Centers 5

Metric Description
Total migration time (TT) Total elapsed time from start to completion of a migration.
Downtime (DT) Time duration of the stop-and-copy phase, i.e., the time during

which the VM is stopped.
Transferred data (TD) Total amount of transferred from the source to the destination host.
CPU utilization (CPU) Additional CPU load incurred on the source host during migration.
Memory utilization (MEM) Amount of memory consumed by the live migration algorithm.
Performance degradation Performance degradation experienced by migrated VM measured
(PERF) in instructions per second (IPS).
Degradation time (DegT) Duration of migrated VM’s performance degradation.

Table 2. Measured and modeled live migration metrics.

Given the wide range of live migration techniques, physical hosts, and character-
istics of VMs, the model is machine-trained. A large database of several 100’000 live
migrations performed in our research cluster using all migration techniques is used
as the training data set. Each record contains the characteristics of the VM obtained
through black-box profiling, the state of the involved physical hosts, the live migra-
tion technique, as well as the actual metrics observed during the migration. In addition
to real-world benchmarks and to better cover the large parameter space, the training
dataset also contains data obtained from migrating VMs running synthetic workloads.
Support vector regression (SVR) [30]) is employed to train the model parameters. A
separate model is trained for each combination of the live migration technique, the pre-
dicted metric, and the type of the source and destination hosts.

3.1 Live Migration Metrics

Table 2 lists the seven VM live migration metrics measured and predicted in this paper.
Metrics of interest to the end-user include the downtime DT, the performance degra-
dation PERF, and the duration of the degradation DegT. Metrics of interest to the data
center operator are the total migration time TT, the amount of transferred data TD, and
the CPU and memory utilization incurred by the live migration (CPU and MEM). For
all seven metrics lower is better.

3.2 Analytically Modeling Performance Degradation

End-user SLOs considered in this work are the minimally guaranteed CPU perfor-
mance and the duration of the degradation while a VM is migrated. Users running a
throughput-oriented workload may be willing to accept a 90% degradation in perfor-
mance for a short duration while end-users for latency-critical workloads may prefer an
SLO guaranteeing a minimal 10% performance degradation for a longer period of time.
Other SLOs such as the frequency of migration are part of future work.

Live migration-aware SLOs are not only of interest to end-users but also to data
center operators. VMs that accept a performance degradation during live migration can
be offered at a lower price than VMs that are required by SLOs to provide strict tail-
latencies. This flexibility allows the data center operators to classify VMs into station-
ary VMs that cannot be migrated and mobile VMs whose SLOs allow migration. These
mobile VMs can then be targeted for migrations for the purpose of load balancing,
increasing utilization and consolidation in a warehouse.
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Fig. 4. VM performance in dependence of the migration technique.

An analysis of real-world workload patterns reveals that predicting the maximal
performance degradation based on profiled performance is difficult [7]. Figure 3 shows
that workloads exhibit large IPS variations as execution transitions between different
phases. Since it is impossible to know whether the profiled IPS was obtained during
an idle or a high-load period, predicting the IPS based on such data is not a viable
approach. This paper thus predicts the relative performance degradation PERF and the
duration of the degradation DurT based on analytical models that are fine-tuned by
measuring performance degradation of synthetic benchmarks during live migration with
all techniques and between all combinations of hosts.

Figure 4 plots the IPS of a CPU-intensive (upper row) and memory-intensive (lower
row) workload for different migration techniques. The plots reveal that the performance
during migration is strongly affected by the host CPU load, the VM CPU utilization,
the VM memory size, the working set size, and the page dirty rate. The effect of CPU
throttling on performance is visible for memory-intensive workloads migrated using
the THRottling technique. Similarly, the severe performance degradation caused by the
POST-copy technique is pronounced especially for memory-intensive workloads.

To predict the guaranteed minimal performance and the duration of the degradation
for a workload, live migration technique, and involved hosts, the workload generator is
executed with four intensity levels ranging from 0 (CPU bound) to 3 (memory bound)
with different working set size and page dirty rates. The results of these experiments
are consolidated into a Linear Regression model that allows to compute the guaranteed
minimal performance of a VM. Figure 5 shows the estimated starting point of throttling
for the different memory intensities indicated by the magenta vertical line.
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Fig. 6. 10-Fold Cross Validation of the Model (Geo Mean Absolute Error)

3.3 Predicting Key Live Migration Metrics using Machine-Learned Models

The remaining five parameters (total migration time, downtime, transferred data, CPU
and memory utilization) are predicted by the machine-learned SVR model. The model
is trained with around 90’000 live migration instances for each technique and physical
host type. In addition to the 20 input features from prior work [18], the model also takes
the processor type of the source and destination host as additional inputs to account for
the heterogeneity of the physical hosts involved. Figure 6 displays the result of 10-fold
cross validation of the presented model trained using a SVR Bagging regressor; details
of model training are given in prior work [18]. The accuracy of the model is slightly
below that of prior work - which is expected due to the higher number of features caused
by heterogeneous hosts and the nine predived live migration techniques.

4 Service Level Objectives and Migration Technique Selection

Existing Service Level Agreements in commercial data centers focus foremost on ser-
vice uptime [3,10] and allow for little performance variation [8]. As a consequence,
virtual machines are stationary: once placed on a host, a VM is immobile and migrated
only when the host has to undergo maintenance [9]. Stationary VMs stifle efficient load
balancing and consolidation, both operations that are beneficial for data center opera-
tors to lower the TCO. One of the main reasons of the reluctance to pro-actively live
migrate VMs is that the effects of live migration on the migrated VM and the data cen-
ter are difficult to quantify. The model presented in the preceding section demonstrates
that is it possible to predict several key metrics of live migration in an accurate and
low-overhead manner. To benefit from this ability to accurately predict the effect of
live migration, is is necessary to rethink existing migration policies and service level
agreements (SLAs).
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The ability to predict downtime, guaranteed performance, the duration of the per-
formance degradation of live migration allows service providers to offer what we call
SLOs for mobile VMs. Service level objectives can be defined from the perspective of
the the end-user and the service provider. The former are part of the SLA between the
end-user and the service provider and typically cause a financial loss when violated.
The latter are objectives whose optimization leads to a lower TCO due to reduced re-
source usage; their violation, however, does not directly lead to contractual violations
with financial reparations.

SLOs that enable mobile VMs are beneficial for both the service provider and the
end-user. The service provider benefits from a pool of movable VMs that can be mi-
grated to to achieve load balancing or node consolidation. The end-user benefits from
cheaper VMs since mobile VMs are expected to be priced below stationary VMs.

5 Evaluation

5.1 Cluster Configuration and VM Workloads

VMs are deployed on our internal research cluster comprising eight heterogeneous
physical nodes. Four nodes are equipped with a quad-core Intel Skylake i5-6600 pro-
cessor and 16GB of physical memory. The other four nodes contain an octa-core AMD
FX-8300 processor and 16GB of physical memory. The nodes are interconnected with
three separate networks, one for application traffic, one for migration traffic, and one
for remote storage traffic. The nodes run Ubuntu 16.04 with the QEMU-KVM 2.8.5
hypervisor that supports all evaluated live migration techniques from Table 1. Each
VM is configured with 1 VCPU and 2 GBs of memory. The migration network has a
bandwidth of 1Gbit/s.

The workloads executed in the VMs include Intel-Hadoop Hibench [16], Tailbench [21],
YCSB memcached [36], and Mplayer [33]. The Hibench benchmark suite contains sev-
eral micro-benchmarks and machine learning workloads that are widely used in cloud
services. Tailbench consists of latency-critical workloads, and the YCSB Memcached
benchmark is designed to evaluate the performance of in-memory database workloads.
Mplayer, finally, represents a video-streaming workload.

5.2 Migration Polices

Table 3 lists the SLO policies evaluated in this paper. All policies except Min TT contain
user and provider SLOs that must be met. The optimization goal lists the metric that is
to be minimized if several live migration techniques are expected to meet all SLOs.
The policies are constructed to cover several scenarios. Min TT migrates VMs as fast as
possible by minimizing the total migration time TT; this policy is useful if the machine
has to undergo an emergency shutdown. The other five policies contain more or less
stringent SLOs for both the user and the provider with different optimization goals to
cover various scenarios.
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Policy Name User SLO Provider SLO Opt.Goal Description
Min TT - - TT Minimize total time.
High Performance DT ≤ 1s CPU 100% DT Minimize downtime under

strict limits for downtime and
performance

PERF ≥ 95% MEM 512MB
DegT ≤ 5s

Least Traffic DT ≤ 2s CPU 100% TD Minimize transferred data
with relaxed downtime and
performance limits

PERF ≥ 60% MEM 512MB
DegT ≤ 20s

Least Operation Cost DT ≤ 3s CPU 100% TT Minimize migration time
with performance guaranteesPERF ≥ 75% MEM 512MB

Reduced Downtime DT ≤ 1s TT 60s DT Minimize downtime while
limiting migration time and
performance degradation

PERF ≥ 50%
DegT ≤ 30s

Traffic Overload PERF ≥ 80% TD 3GB TD Limit transferred data while
maintaining performanceDegT ≤ 60s

Table 3. SLOs for mobile VMs.

5.3 Live Migration Sequence and Technique Selection

The experiments evaluate a sequence of 480 migrations that occurred in real-live on the
cluster. In every case, the state of the cluster is recreated as faithfully as possible with
the same number of co-located VMs running the same workloads, nevertheless, differ-
ences in the actual resource utilization are possible due to different execution phases
within the workloads. When replaying the migration sequence, the management frame-
work (Figure 1) first profiles all VMs on the source host as discussed in [18]. Next,
the profiles are fed into the model to predict the metrics for all VMs and live migration
techniques. If several techniques are expected to meet all SLOs, the technique that min-
imizes the optimization goal is chosen. If all techniques are predicted to violate one or
more SLOs, the technique with the smallest average relative violations is chosen. Note
that in a real-world scenario, the framework may choose not to migrate a VM in such
a case; since this paper aims to demonstrate that the number of SLO violations can be
minimized with the presented model, the framework always migrates a VM.

5.4 Analysis of SLO Violations

Figure 7 shows the average relative score of SLO violations (i.e., the average severity of
the violations) and total number of SLO violations for the different live migration tech-
niques. The Min TT scenario is not shown because it has no SLOs. The white bar shows
the single static live migration technique that incurs the minimal relative SLO viola-
tion score, the presented model-guided technique, and results for an oracle model that
can predict all metrics without any error. We observe that the guided approach clearly
outperforms the choice of a single technique by a large margin and comes relatively
close to the oracle model. Guided outperforms static in all cases except the absolute
number of SLO violations for the Least Traffic policy. While the post-copy technique is
the single best technique that minimizes the number of SLO violations, the violations
are much more severe than those incurred by the guided approach.
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While the model shows an average error of 10% over all predicted metrics, an inter-
esting question is how this prediction error manifests in terms of absolute SLO viola-
tions. Figure 8 shows the results. The white bar denotes true positives, i.e., the selected
technique was predicted to violate an SLO and actually did so, while the blue bar shows
false negatives (violation occurred despite no violation predicted). Only false negatives
are a concern since true positives were expected to occur. The results reveal that the pre-
diction of performance under stringent constraints is difficult for the proposed model
and leaves room for improvement in future work. Note, however, that to the best of our
knowledge, there exists no model that can predict performance and the duration of the
performance with higher accuracy than the model presented in this work.
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5.5 Importance of Model-Guided Live Migration Technique Selection

Figure 9 finally plots the selected live migration techniques for single, guided, and or-
acle technique selection for the different migration policies from Table 3. The figure
reveals that selecting the appropriate technique depends less on the migration policy
but rather on the workload running inside the VM and the state of the source host. In
other words, this results clearly demonstrates the necessity of model-guided live migra-
tion technique selection to reduce not only the total number of SLO violations but also
the severity of those violations.

6 Related Work
Since the introduction of various live migration techniques over the last decade, a num-
ber of researchers have tackled the problem of employing the different techniques prop-
erly. Koto [22], Nathan [25], and Svard [32] all propose guidelines for live migration
technique selection that are, however, difficult to deploy in real systems due to the lack
of a systematic way of choosing them. Similarly, there exist a number of works that
model the performance of live migration techniques. Analytical models require com-
plex calibration when deployed and are thus not of much practical use in heterogeneous
data centers. Jo [18] has presented the first machine learning-based attempt to live mi-
gration modeling. That work only considers five techniques and four metrics but served
as the basis for the model developed in this paper.

A number of migration frameworks have been presented that aim at resolving or
avoiding hot-spots. Sandpiper [35] is an early dynamic migration system which is miti-
gating hotspots in the cluster on-demand. It periodically builds a per-node resource uti-
lization profile and predicts hotspot occurrence in advance using a simple time-series
prediction technique. Sandpiper uses a simple heuristics that selects the VM to migrate
and only employs the pre-copy migration technique. CloudScale [27] presents a re-
source prediction technique to avoid SLO violations before they manifest. It increases
resource capping when a peak resource demand is expected in the near future. Cloud-
Scale’s design can tolerate a certain amount of resource demand misprediction by not
fully committing all available resources. VMs are only migrated when no resources are
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available on the node. While CloudScale takes the migration overhead into consider-
ation to prevent possible SLO violations during live migration and employs a simple
linear regression model to predict live migration cost. It has been shown, however, that
a simple linear model is unable to predict the migration cost of a VM with high accu-
racy [1,18,24].

This work is based on prior work by Jo [18] that focuses on developing machine-
learned models to predict six live migration metrics (total time, downtime, transferred
data, CPU and memory utilization, and performance degradation). The modeling of live
migration metrics is similar to prior work. This work uses the same machine-learned
approach to model five of the six metrics, but supports nine instead of five migration
techniques and heterogeneous data centers. Also, it was found that performance degra-
dation and the new metric performance degradation duration are better predicted with
analytical models. Other than prior work, this paper proposes and evaluates new live
migration-aware SLOs that enable data centers to classify VMs into stationary and mo-
bile to achieve flexible migration of VMs and thus better resource utilization.

7 Conclusion
Strict SLOs and the uncertainty of the effect of live migration prevent data centers
from employing live migration to achieve better load balancing and higher resource
utilization. This paper demonstrates that the combination of live migration-aware SLOs
and an accurate model predicting several key metrics of live migration allows for an
economically more efficient use of live migration in data centers while minimizing the
number of SLA violations. An evaluation with six policies and 480 live migrations
shows that the presented migration-aware SLOs and smart live migration framework is
able to significantly reduce the total number of SLO violations and the relative violation
of these SLO compared to any static single migration technique.
The live migration dataset, the model, and the source code of the framework are avail-
able at https://csap.snu.ac.kr/software.
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