A Machine Learning Approach to Live Migration Modeling

Changyeon Jo
Seoul National University
Seoul, Korea
changyeon@csap.snu.ac.kr

ABSTRACT

Live migration is one of the key technologies to improve data center
utilization, power efficiency, and maintenance. Various live migra-
tion algorithms have been proposed; each exhibiting distinct char-
acteristics in terms of completion time, amount of data transferred,
virtual machine (VM) downtime, and VM performance degrada-
tion. To make matters worse, not only the migration algorithm but
also the applications running inside the migrated VM affect the
different performance metrics. With service-level agreements and
operational constraints in place, choosing the optimal live migra-
tion technique has so far been an open question. In this work, we
propose an adaptive machine learning-based model that is able to
predict with high accuracy the key characteristics of live migration
in dependence of the migration algorithm and the workload run-
ning inside the VM. We discuss the important input parameters for
accurately modeling the target metrics, and describe how to profile
them with little overhead. Compared to existing work, we are not
only able to model all commonly used migration algorithms but also
predict important metrics that have not been considered so far such
as the performance degradation of the VM. In a comparison with
the state-of-the-art, we show that the proposed model outperforms
existing work by a factor 2 to 5.

CCS CONCEPTS

+ Computing methodologies — Modeling methodologies; «
General and reference — Performance; Metrics;

KEYWORDS

live migration, performance modeling, machine learning, virtual-
ization

ACM Reference Format:

Changyeon Jo, Youngsu Cho, and Bernhard Egger. 2017. A Machine Learning
Approach to Live Migration Modeling. In Proceedings of SoCC 17, Santa
Clara, CA, USA, September 24-27, 2017, 14 pages.
https://doi.org/10.1145/3127479.3129262

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5028-0/17/09...$15.00
https://doi.org/10.1145/3127479.3129262

Youngsu Cho
Seoul National University
Seoul, Korea
youngsu@csap.snu.ac.kr

Bernhard Egger
Seoul National University
Seoul, Korea
bernhard@csap.snu.ac.kr

1 INTRODUCTION

The past decade has seen a greatly increased demand for techniques
for dynamic management of resources in data centers. The goal
is to minimize energy consumption while maximizing hardware
resource utilization in order to reduce the operational cost and the
environmental impact [40]. Virtualization is one of the key tech-
nologies for efficient data center operation [23] as it enables better
utilization of resources by running multiple virtual machines on
one physical host. To adapt to fluctuating workloads and dynam-
ically optimize the resource utilization, virtual machines are live
migrated [10, 37], i.e., moved from one physical host to another
while the virtual machine (VM) keeps running. Live migration
enables load balancing, consolidation, fault tolerance, and eases
maintenance [32].

Live migration of a VM is a relatively costly operation as it in-
volves sending several gigabytes of volatile state of the running
VM from the source to the destination host. Over the years, a
number of live migration algorithms have been proposed [10, 19—
22, 28, 37, 44, 47]. As we demonstrate later in this paper, each of
the algorithms exhibits different performance characteristics that
not only depend on the algorithm itself but also on the state of the
host system, the interconnection network, and to a larger extent
on the workload running inside the VM itself.

With the major cloud platform providers Amazon, Google, and
Microsoft all employing virtualization techniques in their data cen-
ters [3, 16, 31], an important problem is to select the best migration
technique as a function of the operation policies, the character-
istics of the workload in the VM, the state of the involved hosts,
and existing service-level agreements (SLAs). There have been a
significant number of attempts to model performance of live migra-
tion [1, 13, 26, 27, 34, 51, 53], however, given the different migration
algorithms and vast parameter space, analytical or simple prob-
abilistic models do not achieve satisfactory prediction accuracy.
Another shortcoming of existing work is that not all commonly
used live migration algorithms are modeled and that important
performance metrics are missing.

In this paper, we employ machine learning (ML) techniques to
obtain a versatile model that is able to accurately predict key metrics
of different live migration algorithms. Given the resource usage of
the physical hosts and the characteristics of the VM’s workload,
the presented model predicts six key metrics of live migration (total
VM migration time, total amount of data transferred, VM downtime,
performance degradation of the VM, and CPU and memory usage on
the physical hosts) with high accuracy. The model can be integrated
into existing migration frameworks to select the best live migration
algorithm for the migration of a VM.

We show what input features are relevant to model live migration
and describe an efficient implementation to profile these features.

https://doi.org/10.1145/3127479.3129262
https://doi.org/10.1145/3127479.3129262

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

Based on the profiles of over 40,000 live migrations of VMs exe-
cuting a wide variety of workloads, we employ machine learning
techniques to generate the prediction model. The generated model
outperforms the state-of-the-art in live migration modeling by a
factor two to five in terms of its prediction accuracy. By virtue of the
automatic approach, new migration algorithms and profile features
can be easily added rendering the proposed procedure extensible
and flexible. In summary, the main contributions of this work are
as follows:

e We show that among the existing live migration algorithms
there is no one-size-fits-all technique. Choosing the ‘cor-
rect’ algorithm can significantly improve resource efficiency
and reduce SLA violations.

e We present a machine learning-based modeling approach
to predict important performance metrics of live migration
algorithms for a given VM. The presented work currently
is the only approach that can predict several target metrics
for all commonly used live migration algorithms in a flexible
and automated manner.

o The model achieves a high prediction accuracy on all target
metrics. It is the first to predict the performance degradation
of a VM under migration and outperforms the state-of-the-
art by a factor 2 for the total migration time and a factor 5
for the downtime.

e We demonstrate how employing the model in an existing
live migration framework to automatically select the proper
live migration algorithm can significantly reduce the total
number of SLA violations and improve resource utilization.

The remainder of this work is organized as follows. Section 2
provides the necessary background on live migration. Section 3
demonstrates selecting the optimal technique given SLAs and con-
straints is an important and non-trivial problem. Sections 4 and 5
introduce the ML model and the model parameters and discuss
profiling. The experimental setup and the evaluation are presented
in Sections 6-8. Section 9 discusses related work, and Section 10,
finally, concludes this paper.

2 BACKGROUND
2.1 Live Migration

Migrating a running VM requires moving its entire state from one
physical host to another. In intra-datacenter migration, permanent
storage is typically provided by network-attached storage (NAS)
and does not need to be moved. The volatile state of a VM comprises
its memory and the state of the virtual CPUs (VCPUs) and devices.
The memory, in the order of gigabytes, constitutes by far the largest
part of the volatile state of a VM.

The simplest way of migrating a VM is to completely stop the
machine on the source host, transfer the entire state to the desti-
nation, and then restart the VM on the destination host. The long
downtime of this stop-and-copy technique is impractical for most
environments; it is thus common practice to migrate the VMs while
running to minimize the perceptible effects of the migration [17].

We distinguish the following phases of the live migration process
(Figure 1):

C.Joet al.

(1) Profile. The VM monitor (VMM) profiles the VM and the
system state of the physical host. Profiling may cause a small
performance reduction of the VM.

(2) Prepare. Live migration is initiated. The VMM puts the
VM into a managed mode suitable for live migration, which
typically results in slightly reduced performance in the VM.
The source host starts sending (parts of) the volatile state to
the destination host.

(3) Stop. The VM is stopped both on the source and the desti-
nation host and thus not available to the user.

(4) Resume. The VM is restarted on the destination host. The
parts of the volatile state that are still missing are fetched
from the source host. VM performance may still be reduced
until the resume phase ends.

Not all phases are present in all migration algorithms. The stop-
and-copy technique, for example, comprises a long stop phase with
very short preparation and resume phases. The profile phase is
specific to modeling approaches. Existing live migration algorithms
are very sensitive to the workload running in the VM and the state
of the physical host. During the profile phase, the VMM gathers
the necessary parameters affecting live migration performance and
makes them available to the model. The duration and the overhead
of this phase are discussed in Section 7.

2.2 Live Migration Metrics

In this work, we compare and predict the following metrics for the
different live migration algorithms.

(1) Total migration time (TT): time period from initiation to
completion of the live migration.

(2) Total amount of transferred data (TD): total amount of
data transferred to the destination host.

(3) Downtime (DT): time interval during which the VM is
stopped and unavailable to the user.

(4) Performance degradation (PERF): reduced performance
of the VM during live migration measured in the number of
executed instructions per second (IPS).

(5) Host CPU utilization (CPU): total CPU resources con-
sumed by the VM during live migration on the source host.

(6) Host memory utilization (MEM): memory resources con-
sumed by the VM during live migration on the source host.

The first and last two metrics are of interest to data center operators
to estimate the required resources for the live migration, whereas
the downtime and performance degradation may affect SLAs and
the quality of service (QoS) experienced by the users.

2.3 Live Migration Algorithms

Live migration algorithms can be classified by the point in time
when the volatile state of the VM is copied to the destination host:
during the prepare phase (pre-copy), during the stop phase (stop-
and-copy), or in the resume phase (post-copy). Other algorithms
are hybrids of these three basic approaches or optimize a certain
aspect of a method. We model all five techniques that are supported
by the major virtualization environments [4, 46]:

Pre-copy (PRE) [10] iteratively transfers the volatile state of
a VM during the prepare phase. In each iteration, memory pages
that have been modified by the running VM since the previous

A Machine Learning Approach to Live Migration Modeling

profile. prepare

source

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

stop : resume

|

/B8 VM running at full/reduced speed

destination l \\L\ \L ! = ;i\ 3 -

downtime

I
[] VM stopped !

total migration time

Figure 1: Phases and metrics of live migration

iteration are sent to the destination host. When the number of these
dirtied pages falls below a given threshold, the VM is stopped. The
remaining dirty pages and the VCPU plus device state is transferred,
and the VM is restarted on the destination host. A limitation of
this algorithm is that it never converges if the memory dirty rate is
higher than the available network bandwidth. Thus, if the number
of dirtied pages per iteration remains stable or a certain maximum
number of iterations has been reached, a stop condition is activated
to prevent such non-terminating migrations. Pre-copy is the default
migration algorithm for most virtualization platforms.

CPU throttling (THR) [28] is a technique enforcing conver-
gence of the pre-copy process by deliberately decreasing the allotted
CPU time of a VM to reduce its page dirty rate. CPU throttling can
significantly degrade the performance of the workload running in
the VM.

Delta compression (DLTC) [44] is another optimization for
pre-copy that applies delta compression to partially modified pages
during live migration. This technique may require a significant
amount of additional memory to store memory pages for future
delta computations.

The data compression (DTC) optimization [20] compresses
memory pages before transmission. This technique requires a sig-
nificant amount of additional computation resources and may thus
not be a viable option if the CPU utilization on the host is high.

The post-copy (POST) algorithm [19] is diametrical to pre-copy
in the sense that the VM is immediately restarted on the destination
host after transferring only the execution context (VCPU registers
and device states). The memory contents are transferred by a back-
ground process. Accesses to not-yet-copied pages trigger a page
fault in the VMM that then fetches the accessed page on demand.
These page faults can cause a prohibitive performance penalty in
the VM during the resume phase. Post-copy is attractive because it
has a short and constant downtime and transfers each memory page
only once. The potentially severe performance degradation during
the resume phase, however, limits its applicability in environments
with strict SLAs.

Note that CPU throttling and memory compression are indepen-
dent optimizations that can, in principle, be applied to both the pre-
and post-copy algorithm. In this work, we employ the techniques
as provided by the virtualization framework: the underlying algo-
rithm for THR, DLTC, and DTC is pre-copy and no optimizations
are applied to post-copy.

3 MOTIVATION

TIaaS (Infrastructure as a Service) platforms typically offer various
service level agreements to customers such as guaranteeing a cer-
tain availability or a minimal performance of the VM [3, 16]. In
addition to guaranteeing SLAs, operators are interested in minimiz-
ing the impact of live migration on the data center by constraining
the amount of time, network bandwidth, or host CPU and memory
usage the operation is allowed to consume. Given that all major
virtualization solutions such as QEMU/KVM [4], VMware [48], or
Xen [46] support various live migration algorithms that are used
in production by data center operators [17], an important question
for efficient use of live migration is which algorithm to select in a
given situation.

The performance of live migration algorithms shows not only a
strong variation between the different algorithms but also heavily
depends on the workloads running inside the VM. Figure 2 displays
the results of migrating 512 VMs running individual workloads for
the six modeled metrics with the five live migration algorithms. The
sixth bar, labeled OPT, represents an oracle technique that picks the
best algorithm with respect to the given metric for each migration.
The whiskers depict the standard deviation of the individual VM
migrations. All numbers are normalized to the average performance
of pre-copy (PRE), and in all graphs except performance lower is
better. Note that the additional CPU load caused by live migration is
negative with respect to pre-copy for throttling (THR) and post-copy
(POST). The reduced performance of the VM caused by throttling
(for THR) or page faults (for PRE) on the destination host leads to an
overall reduced CPU load on the source and destination host.

The downtime exhibits the strongest variation between the differ-
ent algorithms with post-copy (POST) being over 1,000 times faster
than data compression (DTC). POST also shows the best performance
for the total migration time and the total transferred traffic, outper-
forming all other algorithms by at least factor two. With respect
to performance degradation observed in the VM, however, POST
performs worst with an average performance degradation of 30%.
Looking at the variance within the different algorithms for the 512
migrations, we observe that each metric is influenced heavily by the
executed workload in the VM and the resource availability of the
physical host. POST, seemingly the ideal choice when considering
only the total time, the downtime, and the total traffic of the migra-
tion, can experience extreme performance degradation of over 90%
in certain cases.

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

C.Joet al.

5.0 7.0 2.0
o o 2
E 40 g 6.0 &g s
= : 5.0 el
e 30 8 40 g
=] = 1.0
E 2.0 E 3.0 g
g E =
£ 20 =
E 1.0 5 £ 0.5
z |i.[| & = 10 0.2 0,002 0002 | Z
0.0 'l 0.0 - - - 00 Lt
PRE THR DLTC DTC POST OPT PRE THR DLTC DTC POST OPT PRE THR DLTC DTC POST OPT
15 25 20.0
g 520 g
g = S
E S s = 150
S 1.0 k=l =
£ z 0 2 10.0
3 g s 027 Tose| T
3 05 5 o LT il
g £ =T f— E 50
S e 5 > 033 011
Z “ “ L |l| :
0.0 -10 0.0 L T
PRE THR DLTC DTC POST OPT PRE THR DLTC DTC POST OPT PRE THR DLTC DTC POST OPT

Figure 2: Relative benefit of the optimization techniques

3.1 Meeting Complex SLA Requirements

Given that the performance of the different metrics of live migration
depends on the workload running inside the VM as well as the re-
source state of the host (this includes co-located VMs), the question
arises how to know which algorithm is least likely to violate the
SLAs while at the same time satisfy other operational constraints
of a data center. The additional system resources consumed by a
live migration algorithm should not cause a system slowdown or
affect other VMs; this is especially true when live migration is used
to eliminate hot spots: the source host is already overloaded, any
additional consumption of resources must be minimized. The prob-
lem becomes more complex if SLAs are in place that guarantee, for
example, no more than a 15% performance degradation.

To the best of our knowledge, there is currently no model avail-
able that can predict migration metrics of different live migration
algorithms under consideration of SLA and user constraints. Also,
no models exist that can predict the performance degradation of
a VM and the additional consumption of system resources during
migration. Some analytical models predicting the total time, the
downtime, and the total traffic of migration for the original pre-
copy algorithm have been proposed for Xen[1, 13, 26, 27, 34, 51, 53]
and KVM[2, 25, 38, 54]. Extending these analytic models for other
techniques and or metrics is impractical due to the large number of
parameters that need to be considered.

3.2 Learning from Big Data

Modern data centers run hundreds of thousands of servers to accom-
modate millions of users worldwide. The servers in a data center
generate lots of information from VM performance logs to data
from hardware sensors. This opens new possibilities for data center
management systems. Ferdaus et al. [15] were of the first to employ
machine-learning to predict the power usage effectiveness of data
centers by using 200,000 training samples collected in Google data
centers over a period of two years. The model considers 43 distinct

input parameters; building an analytic model considering such a
large number of parameters would be impractical at the least.

Predicting the performance of live migration given the state
of the VM and the underlying physical host is even less suited
for analytical analysis. Not only are there various live migration
algorithms to choose from, but there are several metrics of interest
for each technique. For n algorithms and m metrics, one would
have to construct n X m analytical models that each depend on a
different set of parameters. Machine learning is an ideal technique
to automatically generate models for the different metrics and the
available live migration algorithms using profiling data gathered
in data centers. Such a setup also allows for easy addition of new
algorithms or metrics.

4 MODELING LIVE MIGRATION

One of the keys to success in machine learning is designing a good
input feature set, in other words, a good representation of the input
data to the model. Feature design requires domain specific knowl-
edge and a careful analysis of what input features are likely to be
correlated to the modeled output parameters. Since live migration
requires copying the entire memory of a VM from one host to an-
other, the size of the VM’s memory and the network bandwidth
are highly correlated to the total migration time and the amount of
transferred data. For iterative algorithms based on pre-copy that re-
peatedly copy modified pages to the destination host, the rate with
which the VM is dirtying pages and the working set of the VM are
important. Algorithms that compress data profit from knowing the
entropy to estimate the compressibility of data. Section 4.1 explains
the process of feature selection in more detail.

Our model predicts six performance metrics (Section 2.2) for each
of the five live migration algorithms (Section 2.3). We construct a
dedicated sub-model for each combination of (algorithm, metric)

A Machine Learning Approach to Live Migration Modeling

Aggregated model

v

<THR, DT,f<v1, Vy eeey V,>>

vl T | DT [N\ [MEM|

THR |-
DLTC “.a| DT
DTC model

POST DT, <

Figure 3: Overview of the model

resulting in a total of 30 sub-models. Each model is trained sepa-
rately. The same input vector comprising of properties that rep-
resent the state of the VM, the source, and the destination host
(Table 1) are fed to each submodel. The output of a model is a
prediction for a given algorithm of the metric it was trained for.

For convenience, the sub-models are logically aggregated into a
universal model as shown in Figure 3. The aggregated model takes
the live migration algorithm, the desired metric, and the profiled
input parameters as its input {algorithm, metric, input vector). In-
ternally, algorithm and metric are used to select the appropriate
sub-model, which is then fed the inputvector. The output of the
selected sub-model equals the output of the aggregated model.

The remainder of this section discusses model feature selection
and model generation. An evaluation of the importance of the se-
lected features and the results of the modeling process are provided
in Section 7.

4.1 Model Parameters

The selected input features are listed in Table 1. The first two
columns describe the feature, and the third column shows where
the parameter is profiled. The six composed features at the end of
the table are computed using other features. The model parameters
are chosen such that in their entirety they cover all aspects of the
involved systems that can have an impact on the estimated metrics.
Since live migration requires a transfer of the VM’s memory to a
destination host over a network, the size of the allocated memory,
VM. Size, and the available network bandwidth for the transfer PTR
are important features for all models. Note that VM. Size denotes the
size of the actually allocated memory to the VM, not the assigned
maximal memory size. Similarly, the CPU utilization CPU. UTIL, the
number of retired instructions per second IPS, and the network
utilization NET.UTIL of a VM are necessary to capture and estimate
the performance degradation during live migration. Pre-copy-based
algorithms that iteratively copy dirtied memory to the destination
host, require the page dirty rate PDR and the working set size WSS.
Note the relationship between the PDR and the WSS: the page dirty
rate represents the number of pages dirtied in one profiling pe-
riod, while the working set represents all pages dirtied during the
entire profiling phase. For techniques involving compression of
data, the entropy of both the working set and the non-working

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

set, WSE and NWSE, plus the CPU and memory utilization of source
and destination host, SRC|DST.CPU and SRC|DST . MEM, are included.
To estimate the effectiveness of delta compression, the number of
modified words per page MWPP is profiled.

Composed features represent special combinations of regular
features that allow for a better prediction. For pre-copy-based algo-
rithms, the weighted relative page transfer rate is a combined
parameter computed as

R.PTR = max(WSS, WSS % (PDR/PTR)?)

to reflect the fact that if the page dirty rate is higher than the page
transfer rate the pre-copy algorithm does not converge and the
remaining data will be transferred after the stop condition has been
activated (Section 2.3). The throttling benefit given by

THR.BF = PDR « CPU.UTIL

enables the models to better account for the fact that the CPU
throttling technique is ineffective for workloads that dirty many
different pages with little CPU utilization. The run-length compres-
sion algorithm employed by the delta compression technique is
more effective the fewer changed words exist in the delta of two
pages. We approximate this benefit of delta compression by con-
sidering the working set size, the page dirty rate, and the number
of modified words per page as follows

DLTC.BF = WSS * (#words per page/ MW PP)

For the data compression technique, the entropy of uncompressed
data determines its effectiveness. We compute the expected size of
the compressed (non-)working set, E. WSS |NWSS, by multiplying
the size of the (non-)working set by the entropy

E-WSSINWSS = WSS|INWSS « WSE|[NWSE

Section 7.2 analyzes whether the selected features are both rele-
vant and sufficient for accurate modeling.

4.2 Model Generation

The large number of features and their often inconspicuous but
significant effects on a target metric render the task of manually
generating separate models for all combinations of techniques and
target metrics a difficult one. The different sub-models are gener-
ated automatically using supervised machine learning techniques.
We employ three different techniques: linear regression, support
vector regression (SVR) with non-linear kernels, and SVR with
bootstrap aggregation. Linear regression is a common and simple
regression technique fitting the given samples using a straight line
with minimal error. Linear regression is a reasonable choice if there
exists a clear linear relation between the data set and the target
value. SVR [42] is a regression technique for complex data points
that exhibit a non-linear relationship between the features and
the target value. We use a radial basis function for the loss func-
tion with a penalty parameter C = 10.0, and the input features are
standardized. The third modeling technique uses bootstrap aggrega-
tion [7] of the SVR model to improve the accuracy of the predictions.
Bootstrap aggregation, also known as bagging, constructs multiple
submodels with a subset of the full dataset and overfits the model
to the dataset. After the submodel training, the average prediction
of all submodels is used as the final value. Results are discussed in
Section 7.

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA C.Joet al.
Feature Description Source
VM size (VM.Size) Number of allocated pages to the VM VMM
Page dirty rate (PDR) Average number of pages modified per second VMM
Working set size (WSS) Number of modified pages during profiling period VMM
Working set entropy (WSE) Entropy of working set memory VMM
Non-working set entropy (NWSE) Entropy of non-working set memory VMM
Modified words per page (MWPP) Number of modified words in modified pages VMM

Instructions per second (IPS)

Page transfer rate (PTR)

CPU utilization of VM (CPU.UTIL)

Network utilization of VM (NET.UTIL)

CPU utilization on host (SRC|DST.CPU)
Memory utilization on host (SRC|DST.MEM)

Number of retired instructions per second
Reserved bandwidth for live migration
CPU utilization of the VM process
Network utilization of the VM process
CPU core utilization on the involved hosts
Memory utilization on the involved hosts

Source host
Source host
Source host
Source host
Src + dest host
Src + dest host

Weighted relative page transfer rate (R PTR)
Non-working set size (NWSS)

Benefit of delta compression (DLTC.BF)
Benefit of CPU throttling (THR.BF)
Compressed size of WSS (EWSS)
Compressed size of NWSS (E.NWSS)

Weighted relative page transfer rate to page dirty rate Composed
Number of not modified pages during profiling period Composed
Expected benefit of delta compression technique Composed
Expected benefit of CPU throttling technique Composed
Expected size of WSS after compression Composed
Expected size of NWSS after compression Composed

Table 1: The 20 input features of the ML model

5 FEATURE PROFILING

In order for the model to make a prediction, the features listed in
Table 1 need to be available. For performance reasons, not all fea-
tures are measured continuously but gathered during a short period
of profiling before the actual live migration is started (Section 2.1).
The profiling period is further divided up into intervals. Data is
gathered during the entire profiling period but measured at the
end of each interval in order to detect variations in the individual
features.

5.1 Lightweight Profiling

Some of the features are obtained easily because they are continu-
ously monitored by the operating system (OS) or the VMM. Others,
such as memory access patterns or entropy of data in memory,
are notoriously difficult to profile without a high computational
overhead [35]. In the following, we discuss our implementation for
efficiently profiling the required values.

Features provided by the OS/VMM. The following features
are either provided directly by the VMM, the OS or can be obtained
easily through querying the CPU’s performance monitor: VM. Size,
PTR, CPU.UTIL, NET.UTIL, IPS, SRC|DST.CPU, and SRC|DST.MEM.
Obtaining these features causes no significant overhead.

Page dirty rate and working set. To compute the page dirty
rate, the write accesses of a VM to its memory need to be monitored.
Thanks to the hardware support of modern CPUs, the overhead
of profiling the PDR is minimal. The PDR is measured after every
profiling interval. The working set is the union of all PDRs and
computed at the end of the profiling period.

Modified words per page. Computing the MWPP for all modified
pages is too compute-intensive, we thus compute the values for a
subset only. Experiments show that a sample of 1/32 of all modified
pages provides sufficient accuracy at a moderate computational
overhead of 1% additional load on one processor core.

Data entropy. The entropy of data stored in the memory is
computed at the end of the profiling period by building a frequency
histogram at byte granularity. Computing the entropy for the entire
VM memory would be too costly (the entropy is computed for
the working set and the non-working set), we revert to sampling
every 324 page which takes 120ms for 2GB of memory on our test
machines. This overhead is only incurred once since the entropy is
only computed at the end of the profiling period.

5.2 Profiling Period and Interval

In our approach, we profile the VM for a few seconds before starting
the migration (Section 2.1). As a consequence, profiling can delay
the beginning of the migration and should thus be as short as
possible. In related work, Nathan et al. [34] propose a maximum
profiling period of VM. Size/PTR, i.e., dividing the VM memory size
by the page transfer rate. For a 2GB VM transferred at 1 gigabit per
second, this results in a rather long profiling period of 16 seconds.
We thus employ adaptive profiling: data is collected at periodic
intervals of one second with a minimal and maximal total profiling
period of 3 and 20 seconds, respectively. We stop adaptive profiling
using a simple heuristic: we monitor the increase of the working
set size and terminate profiling when the working set size does
not increase by more than 1 MB in the last interval. The effect of
adaptive profiling on prediction accuracy is discussed in Section 7.

5.3 Profiling Overhead

Figure 4 shows the relative performance degradation (IPS) in the
VM caused by profiling in dependence of the host’s CPU load.
Performance drops by 1-3% up to a utilization of 80% and up to 5%
for a CPU utilization up to 97%.

A Machine Learning Approach to Live Migration Modeling

1 T A A A .

:
S 0.8
|9
(="
207
g
~ 0.6

0.5

0 20 40 60 80 100

CPU Utilization (%)

Figure 4: VM performance degradation caused by profiling
in dependence of host CPU utilization

6 EXPERIMENTAL SETUP

We now present an in-depth analysis of the model and show how it
can be applied in data center to reduce the number of SLA violations
caused by live migration.

6.1 Host and VM Setup

VMs with 1-2 VCPUs and up to 2GB of memory are deployed on
and live migrated between heterogeneous machines comprising
Intel Skylake i5-6600 quad-core processors with a varying clock
rate and 8-32GB of memory. The machines are connected by three
dedicated 1Gbit networks for shared storage, public networking,
and migration traffic. Ubuntu server 14.04 LTS is installed both
on the host machines and inside the VMs. The host machines run
QEMU VMM version 2.3.5 with additional profiling capabilities as
discussed in the previous section.

6.2 Workloads

We use 37 workloads from benchmark suites and applications repre-
senting real-world loads. The workloads are taken from the follow-
ing benchmark suites: SPECWeb [43] simulates a web server hosting
banking and e-commerce services. OLTPBench [14] is a database
application for online transaction processing. Memcached [30] im-
plements an in-memory key-value store, Dacapo [6] is a set of java
applications, and PARSEC [5] contains a set of emerging multi-
threaded workloads. Bzip is used as a compute- and data-intensive
application, and mplayer [33] represents a multimedia workload.
A synthetic random workload generator is used to generate a wider
range of datapoints for model training. The workload generator
can generate different CPU, I/O, and memory usage patterns, al-
lowing us to control the page dirty rate, the working set size, the
number of memory writes per page, or the data entropy. We employ
the workload generator in random mode to produce memory dirty
rates ranging from 15 to 1024 MB/s with working set sizes from
128 to 1536 MB, memory writes strides of 1 to 512 bytes, and a data
entropy from 0.1 to 1.0.

6.3 Building the Data Set

The training data for the machine learning models has been gen-
erated over a period of several months by live migrating a total of

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

1.0 e S
0.8
0.6
A T S N IR VM.Size
) PDR
0.4 - - - WSS
......... MWPP
0.2 VM.CPU
-« — Host.CPU
0.0
0 25 50 75 100

Normalized Value
Figure 5: Statistics of the dataset used for the evaluation

over 40,000 VMs with the different live migration algorithms. For
all migrations, the profiled model parameters, the values of the six
target metrics, and other data for future work were recorded in
a database. On each physical host, up to four VMs are co-located
and compete for the shared resources. Each VM runs either one of
the application benchmarks or the synthetic workload generator. A
random VM of a random source host is selected and live migrated
to one of the destination hosts. The available bandwidth of the mi-
gration network is set to a random value between 50 and 125MB/s
to emulate a resource-constrained environment. In this work, we
have limited ourselves to one concurrent live migration per host.
The cumulative distribution function (CDF) of five selected features
shown in Figure 5 demonstrate that the data covers a wide range
of the parameter space.

7 MODEL EVALUATION

The submodels for the prediction metrics are trained and tested
with the sci-kit learn v0.17 [41] toolkit. Training and test data is
generated using 10-fold cross-validation: the data set is first split
into 10 equal-sized subsets. Each subset serves as the test set once
while the union of the remaining nine forms the training data set.
The reported values represent the average of the 10 evaluations.

7.1 Target Metric Prediction Accuracy

We report the prediction accuracy for three different regression
techniques (linear regression, SVR with non-linear kernels, and SVR
with bootstrap aggregation) for the five live-migration algorithms
PRE, THR,DLTC, DTC, and POST, and the six target metrics. The results
are shown in Table 2. The Mean Absolute Error (MAE) represents
the average divergence of the predicted value to the actual value in
absolute units of the metric (ms, MB, or %) while the Mean Relative
Error (MRE) displays the average relative error of the prediction.
Linear regression, shown in the first six rows, does not achieve
satisfactory accuracy: the average prediction error exceeds 10%
for all algorithms. The main reason of the high error comes from
the complex correlation of the features. A naive approach cannot
capture the complexities and fails to train the model successfully.
The results of SVR are shown in the second six rows of Table 2.
Compared to linear regression, the overall accuracy of the models
has increased significantly. Especially target metrics that show a

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

C.Joet al.

PRE THR DLTC DTC POST
Model Target Metric MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE
Total Time (ms) 0.16 3127 0.16 3043 0.17 2412 0.22 7758 0.12 1206
Downtime (ms) 0.27 152 0.50 239 1.07 120 0.84 559 0.52 1
Linear Total Traffic (MB) 0.03 59.0 0.05 86.0 0.08 1054 0.16 136.9 0.00 0.7
regression Performance (%) 0.05 43 0.07 5.9 0.04 3.5 0.08 6.7 0.24 14.4
CPU (%) 0.65 3.6 0.63 4.5 0.86 4.1 0.21 8.9 0.42 10.3
MEM (MB) 4.04 37.2 4.00 35.6 0.40 43.8 3.60 55.9 1.45 22.1
Total Time (ms) 0.06 1197 0.06 1150 0.05 755 0.11 3864 0.03 289
Downtime (ms) 0.23 128 0.28 136 0.35 40 0.50 333 0.29 1
SVR Total Traffic (MB) 0.06 94.4 0.06 94.4 0.04 56.2 0.09 78.4 0.02 18.5
Performance (%) 0.04 3.5 0.05 3.7 0.03 3.1 0.05 4.2 0.11 6.9
CPU (%) 0.50 2.8 0.42 3.0 0.61 2.9 0.10 4.1 0.19 4.5
MEM (MB) 1.94 17.9 1.94 17.3 0.32 35.5 1.87 29.0 0.76 11.6
Total Time (ms) 0.06 1053 0.06 1017 0.05 726 0.10 3322 0.03 309
Downtime (ms) 0.17 96 0.23 109 0.32 36 0.43 285 0.26 1
SVR with Total Traffic (MB) 0.04 70.7 0.04 72.5 0.03 42.3 0.07 64.6 0.02 16.9
bagging Performance (%) 0.03 3.0 0.04 3.5 0.03 2.8 0.05 3.8 0.11 6.4
CPU (%) 0.48 2.7 0.40 2.9 0.59 2.8 0.10 43 0.18 4.5
MEM (MB) 1.79 16.4 1.74 15.5 0.27 293 1.67 259 0.71 10.9

Table 2: Accuracy of the different ML algorithms for the five live migration algorithms and the six target metrics (MRE: geo-
metric mean relative error, MAE: geometric mean absolute error)

non-linear dependency based on several input features show big
improvements. The relative prediction error of the downtime of the
delta compression technique, for example, is reduced from 107%
with linear regression to 35% with SVR. In certain cases, the relative
accuracy decreases by a few percent, for example, the prediction
of the total traffic with an error of only 3% for linear regression
and 6% for SVR for pre-copy. Such cases show a relatively simple
linear relationship between input features and the target value. The
complex kernels of SVR fail to achieve the same results, however,
the drop in accuracy is never severe.

The last six rows of Table 2 shows the results for SVR with
bootstrap aggregation. It is known [7] that in general bagging
outperforms single models. We apply bagging to our dataset with
64 sub-models that use 90% of the full dataset and 80% of the features.
The results show that SVR with bagging achieves high prediction
accuracy for most metrics and clearly outperforms the other two
techniques.

Certain metrics show notoriously high relative errors such as,
for example, the prediction of the use of memory resources on the
source host with up to 179% of error with SVR+bagging for pre-copy.
The reason for the high errors of CPU and memory utilization on the
source host is that these metric include the resource consumption
of the VM itself which can vary greatly depending on the workload
executed in the VM. We notice, however, that the absolute errors
are reasonably small in all such cases: up to 2.8% for the CPU load
for delta compression (relative error of 59%) and 16.4 MB for the
memory utilization with pre-copy (relative error of 179%). In future
work, we will separate the additional CPU and memory resources
consumed by the VM from those caused by live migration.

Algo. TT DT TD PERF CPU MEM
PRE 0.97 0.98 0.98 0.20 0.20 0.79
THR 0.98 0.98 0.98 0.51 0.49 0.80
DLTC 0.95 0.86 0.95 0.16 0.36 0.88
DTC 0.95 0.96 0.98 0.23 0.80 0.70
POST 0.99 0.08 1.00 0.52 0.71 0.85

Table 3: Aggregated CoDs of the input features

7.2 Completeness of Input Features

An important question is whether the selected features include all
relevant parameters. Table 3 shows the coefficient of determination
(CoD, or R?) [8] of the 20 features for each algorithm and metric with
the SVR model. The coefficient of determination measures how well
the prediction fits the measured value; an R? of 1 indicates a perfect
fit of the prediction to the measured target value. We observe a
high correlation for most of the metrics indicating that the selected
features are sufficient to make an accurate prediction. Low R? values,
such as for 0.08 for the downtime with post-copy are caused by
an (almost) constant target value; even a small divergence in the
predicted values then causes a low R? value. Note that the relative
and absolute error of the downtime for post-copy are 26% and only
1ms, respectively. Similarly, the overall CoD for the performance
metric is quite low because the performance degradation is usually
close to zero except for CPU-throttling and post-copy, i.e., there is
little impact on the target value by the feature values.

A Machine Learning Approach to Live Migration Modeling

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

Algorithm Learning Time (s) Prediction Time (ms)
Linear 8.0 0.74
SVR 239.0 5.11
SVR.Bagg 6617.7 188.63

Table 4: Learning and prediction overhead of the model

7.3 Learning and Prediction Overhead

The time required to train and predict values with the proposed
model are shown in Table 4. The learning time includes the total
CPU time required to train the 30 sub-models for the respective
machine learning technique on a modern desktop. The prediction
time is the total CPU time required to predict all target metrics for
all live migration algorithms, i.e., the total time to evaluate each of
the 30 sub-models once. We observe that training can take some
time, especially in the case of SVR with bagging. The prediction
time is sufficiently low not to have an impact on the algorithm
selection, especially in comparison to the entire duration of the
live migration (several tens of seconds). In a data center setting,
re-training of the models can be desirable have the models reflect
the current set of workloads running on its VMs. A computational
overhead of a few CPU hours every few days seems acceptable.

7.4 Data Set Size vs Model Accuracy

Machine learning requires a sufficient number of samples to accu-
rately train a model. The training set used in this work comprises
data from over 40,000 migrations in total or about 8,000 for each of
the five live migration algorithms. Figure 6 shows the progression
of the mean relative and absolute error for selected metrics in de-
pendence of the number of training samples. The analysis reveals
that prediction accuracy increases rapidly, after about 2,000 training
samples improvements are becoming small. This data suggests that
the set of training data is sufficient for the target metrics and VM
workloads used in our setup.

7.5 Adaptive Termination of Profiling

Here we analyze the effect of the profiling duration on prediction
accuracy. We compare the recommended profiling period [34] with
our shorter, adaptive profiling as described in Section 5.2. Using the
proposed heuristics, the average profiling period is reduced from
20 to 7 seconds with no noticeable loss in prediction accuracy: with
adaptive profiling, the average MRE is only 0.36% higher compared
to full profiling.

7.6 Comparison to the State-of-the-Art

The current state-of-the-art in live migration performance modeling
is the work presented by Nathan et al. in 2015 [34]. In that work,
the authors analyze twelve existing performance models for pre-
copy in depth and propose a new analytic model for pre-copy that
outperforms all existing models by a significant margin. Nathan
et al’s work provides an analytical model only for the original
pre-copy live migration algorithm and three target metrics: total
migration time, downtime, and total amount of transferred data.

Total Time (s)
Nathan Ours

Total Traffic (MB)
Nathan Ours

Downtime (s)
Nathan Ours

0.86 0.24 330.1 178.2
237 0.47 993.3 340.8

MAE 4.01 2.19
90th.MAE 10.76 4.26

Table 5: Comparison of our model (Ours) to the state-of-the-
art by Nathan et al. [34] for pre-copy and total time, down-
time, and total traffic. The comparison is limited to pre-copy
and the above three target metrics because [34] does not sup-
port other live migration algorithms or target metrics.

Our comparison with their work is thus limited to the pre-copy
algorithm and the three metrics.

Table 5 shows the overall mean absolute error and the MAE of
the 90‘% percentile. The proposed machine-learning based models
outperform the manually-generated analytical models by a factor
2 to 4 for the overall MAE and, more importantly, also show a
significantly smaller error for the 907 h percentile. Furthermore, the
presented machine learning-approach is not specifically tailored
towards pre-copy or the above three metrics; the same aggregated
model also supports an additional four live migration techniques
and three prediction metrics, clearly demonstrating the advantages
of machine learning when applied to this domain.

8 MODEL-GUIDED VM MIGRATION

In this section, we show one possible application of the presented
model. We have integrated the proposed model into a VM live
migration framework that automatically migrates VMs for load
balancing or consolidation. The model is used to select the best live
migration technique for a given workload under various operator-
and user-provided SLA constraints. The goal is to maximize the
benefit with regards to the defined objectives while meeting SLA
constraints. These objectives and constraints can be defined in
sophisticated ways to reflect the requirements of a data center.

The framework is evaluated with eight different policies as
shown in Table 6, ranging from simple policies with a single ob-
jective (A to D) to more complex policies with SLA constraints. For
Policy E, for example, the objective is to minimize the total time
of migration while keeping the downtime of the VM below 3s and
maintaining a performance of at least 85% in the VM.

8.1 Live Migration Algorithm Selection

To select the best live migration algorithm for a given policy, we
first eliminate all algorithms that are expected to violate the given
SLA constraints based on the model’s predictions. If more than
one algorithm remains, the one that maximizes the given objective
is chosen in a second step. We do not allow for a migration not
to happen, that is, if all algorithms have been eliminated in the
first step, in the second step we choose the one that minimizes the
aggregated relative SLA violation error. This metric is computed by
summing up the relative errors of the expected target values and the
given constraints. For example, if the model predicts a downtime
of 3.1s and the given downtime constraint is 3s, the relative error
is abs(1 — (3.1/3)) = 0.03. We compute this SLA violation error for
all algorithms and all SLA constraints and select the algorithm that
is expected to yield the minimum total SLA error.

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA C.Joet al.
03 03 03
: :
o2 = D02 o2
£ 2 £ 2
= = 5 =
0.1 ~ & 0.1 201
E e g g g
s 00000006000000 = = =
00 F . . . ! 0.0 | . . . { 0.0 | . : : ! 00 F . . . |
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Dataset Size Dataset Size Dataset Size Dataset Size
10.0 1.2 400 20
2 8.0 = 1.0 g ;\?
P 5 0s <300 TS
= = . o =
£ 6.0 £ £ 5
" 06 = 200 210
240 L TRTRRTETE s R - <
g 20 g o2 £ 100 g s
& 0.0 X 0Ob;ééoiéddobbiddo 0.0 = o | 000?000?000?000‘ o | ! ! ! |
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Dataset Size Dataset Size Dataset Size Dataset Size
(a) Total Time (b) Downtime (c) Total Traffic (d) Performance
Figure 6: Impact of dataset size to the model accuracy
Description Policy
P A B C D E F G H
Minimize the total time v v
biecti Minimize the downtime v v v
Objective Minimize the total transferred data 4 v
Maximize the relative performance v
Keep the downtime less than 3.0s v v
SLA Keep the relative performance more than 85% v v v v
Keep the additional memory usage less than 500MB v
Table 6: Policies defining an objective and SLAs
8.2 Evaluation of Guided Migration 10— — —
To compare guided migration against a fixed migration algorithm 2 09 = =1 1 1 11
and an oracle selection, we migrate 500 VMs according to a pre- 6‘3 S s s s e O e O
defined schedule. The schedule defines the VM, the migration time, ° A o 1 e e e
and the destination host. Guided migration selects the algorithm 2 82 IR
as outlined in the previous paragraph. For the fixed selection, we a 0'4
migrate all 500 VMs with the same algorithms and all live migration 2 -
. . . 03 H MM 1 M
algorithms. For the oracle selection, we use actual and not predicted S o2 H o H
values to select the best technique according to 8.1. 0'1 INENETENEEE .
Objective score. We first compare the different selection meth- 0'0
ods with regards to the given objective. The bars in Figure 7 show ' A B C D E F G H AVG

how close the model-guided selection matches the oracle with re-
spect to the objective of the different policies A to H. On average,
the model-guided selection satisfies the objective function to 97%
compared to the oracle selection. The lowest objective scores are
obtained for policies that have minimizing downtime as an objec-
tive; this reflects the fact that the accuracy of the model is lower
than for the other objectives.

SLA Violations. In addition to the objective scores, we measure
the number of SLA violations of the model-guided selection with
respect to the oracle. We use the relative error SLA violation error

Policies

Figure 7: Objective scores

from 8.1 as the score metric. Figure 8 shows that the model-guided
selection outperforms each static live migration algorithm by a
wide margin and comes very close to the optimal result. Figure 9
displays the number and type of SLA violations for each selection
method and the policies with SLA restrictions. Again, we observe
that employing a single technique incurs many more SLA violations

A Machine Learning Approach to Live Migration Modeling

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

Policy D

Policy E Policy F Policy G Policy H

OPT Ours OPT Ours OPT Ours OPT Ours OPT

Policy A Policy B Policy C
Ours OPT Ours OPT Ours OPT Ours
PRE 8 3 1 0 4 0 61
THR 19 1 0 0 3 0 37
DLTC 21 1 1 0 2 0 294
DTC 5 3 1 0 217 216 60

POST 460 505 510 513 287 297 61

Hit rate 0.89 0.99 0.88 0.58

42 45 33 45 109 121 34 35
44 42 27 24 43 42 24 23

268 307 294 294 301 190 186 255 250

36 26 39 29 51 46 166 141
84 106 120 114 120 118 34 64
0.64 0.71 0.59 0.69

Table 7: Live migration algorithm selection under different policies for the proposed (Ours) and the oracle (OPT) model

0.6
= 0.81 0.81 2.4
g 05 T T
=
2
= 0.4
S 03
w
202 =
= _
il il
0.0
B = & ES Ee & &
%O 2oz Zoz Pop ®An HAn EAg
CORED=R oD -V D B I B TP - V=R o
PRE THR DLTC DTC POST Model Oracle
Figure 8: SLA violation scores
500
BPF
£ o0 avEm |
2 300 OPF&DT ||
(z _ OPF&MEM
o
5 200
°o
£
Z 100
0

EFGH EFGH EFGH EFGH EFGH EFGH EFGH
PRE THR DLTC DTC POST Model Oracle

Figure 9: Number and type of violations

than the proposed approach. Note that a violation of an SLA even
by the smallest margin counts as a violation; from Figure 8 we
know that the relative violation error is close to that of the oracle
selection.

Algorithm Selection. Table 7 compares the choices of the mi-
gration algorithm of our model-guided versus the oracle selection.
We observe a similar distribution of the selected techniques be-
tween two for the different migration algorithms. We also count
how many times the model-guided selection chose the same tech-
nique as the oracle; this is reflected in the hit rate defined as the
number of correct predictions of our model with respect to the ora-
cle. The hit rate varies for the different policies. We observe lower
hit rates for the more complex policies E-H when the benefits of the
algorithms are not obviously different (D). However, even a lower
hit rate does not mean that the guided selection performed poorly.
In many cases, the model-guided selection picked an algorithm

== Policy E
==t Policy F
——Policy G
—0— Policy H

Relative SLA Achievement
=}
oo

0 10 20 30 40 50 60 70 80 90 100
Additional Error to Oracle Model (%)

Figure 10: Oracle with errors

performing only marginally worse than the one selected by the
oracle. This is evident by looking at Figures 7 and 8 that reveal that
the loss of benefit is not that significant.

Overall, we conclude that the model-guided migration selection
outperforms the standard practice of selecting a single algorithm for
all live migrations and that it performs reasonably well compared to
the lower bound set by the oracle selection. In a dynamic scenario,
where the VM migration schedule is determined based on hot/cold
spot detection, we expect that our model-guided selection will result
in fewer migrations and SLA violations.

Effect of modeling accuracy on SLA violations. To measure
the importance of the model accuracy with respect to the number of
SLA violations, we measure the number of violations of the oracle
model with artificially introduced errors from 0 to 100 percent.

Figure 10 shows the score of respected SLAs normalized to our
model. We observe that model accuracy has a similar effect on SLA
violations independent of the policy. Higher model accuracy clearly
leads to less SLA violations. With an error of 40% or more, algorithm
selection performs similar to random guessing. We observe that
our model performs similar to an oracle with a 10% error. We also
notice that higher prediction accuracy has the potential to lead to
up to 15% less SLA violations.,

8.3 Generality and Limitations

The results in this paper show that predicting diverse target metrics
for a variety of live migrations using machine learning is feasible
and leads to good results for our experimental setup. The presented
features and the gathered dataset, however, may not be sufficient for
more complex data center environments with heterogeneous nodes,

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

hierarchical networks, or special virtualization technologies such
as PCI pass-through. Nevertheless, this work demonstrates that ma-
chine learning techniques can be employed to semi-automatically
generate accurate prediction models for a wide range of features.
The input features fed to the models may have to be extended and
new live migration data may have to be collected for specific cases,
but our results also show that a few thousand migrations suffice to
achieve relatively accurate predictions of the target metrics.

9 RELATED WORK

Machine learning is a powerful tool that uses data to solve complex
problems in real systems. Several researchers have applied machine
learning to solve critical problems in data center management such
as performance modeling of VMs [9, 24] or an interference-aware
cluster management framework [11, 12, 39]. In this work, we fo-
cus on modeling key metrics of live migration to enable elastic
management of data center resources.

Modeling live migration performance accurately has been ad-
dressed by a number of researchers in the past. Akoush et al. [1]
propose a simulation-based live migration modeling approach. The
model only predicts the total migration time and the downtime.
Important parameters are missing which limits the prediction ac-
curacy to only 90%. Liu et al.’s [27] online performance prediction
model also requires profiling of all memory accesses of a VM. In
addition to total migration time, downtime, and total traffic, the
model also predicts the power consumption of a migration. Impor-
tant input parameters are missing, resulting in reduced prediction
accuracy. To the best of our knowledge, the most advanced work on
live migration modeling has recently been presented by Nathan et
al. [34]. The authors reveal serious performance problems of twelve
existing models [1, 2, 13, 25-27, 29, 38, 50, 51, 53, 54] and propose
an accurate analytic model that outperforms all existing models
for Xen and KVM. Predicted metrics are limited to the total migra-
tion time, the downtime, and the total traffic of a live migration.
In comparison to Nathan al.’s work, our machine learning-based
approach is not only much more versatile in supporting all com-
monly available live migration algorithms and six target metrics
but also significantly more accurate.

Although there have been many works on live migration model-
ing, we argue that all current approaches are far from ideal. First,
there is no general model that can predict performance degradation
under live migration. According to [18, 49, 52], the degree of perfor-
mance degradation of a migrated workload is highly dependent on
the workload itself. Ye et al. [52] predict the performance degrada-
tion of a VM based on a history of recorded migrations, rendering
this method unsuitable for unknown workloads. Second, existing
models do not properly capture the effect of limited resources on
the performance of live migration. One attempt [36] only consid-
ers the reserved network bandwidth as an input parameter; other
important parameters such as the utilization of CPU and memory
are ignored. Third, existing models fail to predict the expected ad-
ditional resource requirements of the live migration process. This
can be important information, especially when there is a lack of
resources on the servers involved in the migration. Last but not
least, there is no model that supports all common live migration
algorithms. Since pre-copy and post-copy live migration have been

C.Joet al.

introduced, many optimization techniques such as data compres-
sion, delta compression, and CPU throttling have been proposed.
There is some work on selecting the proper optimization technique
and important parameters to the performance of optimization tech-
niques [35, 45], but the current models only consider vanilla Xen
and KVM migration techniques.

In this work, we address all of the aforementioned problems. We
exploit the power of a diverse migration dataset and state-of-the-
art machine learning techniques to model various live migration
algorithms and predict important target metrics including the per-
formance loss of the VM and the expected additional resource con-
sumption during migration. Our model supports all common live
migration algorithms and predicts six performance metrics with
high accuracy which is a great step forward from the current state.
Compared to existing work, the proposed model is more versatile,
supports more migration algorithms, is able to predict more metrics,
and demonstrates a higher accuracy for the predicted metrics.

10 CONCLUSION AND FUTURE WORK

This work, a machine learning-based technique to automatically
construct accurate models that can predict key metrics of VM live
migration under varying resource constraints and workloads for
all commonly available migration algorithms has been proposed.
We discuss the relevant parameters necessary to model the perfor-
mance metrics and outline the key ideas to lightweight profiling of
these input parameters. The proposed technique achieves a very
high prediction accuracy for all target metrics and live migration
algorithms for heterogeneous set of physical and virtual machines.
Compared to the state-of-the-art, the presented model achieves
an improvement of prediction accuracy of factor 2 to 5. The re-
sults show that accurate analytical models are difficult to build
and require a big engineering effort. We strongly believe that the
presented machine learning-based approach is the proper way to
go forward since it allows for easy and automatic adaptation to
new target metrics, live migration algorithms, and hardware envi-
ronments. Employed in a live migration framework, the proposed
model is shown to reduce the number of SLA and operator-specified
constraint violations significantly.

In future work, we plan to adapt and test the model on more
heterogeneous platforms and in more complex migration scenarios.
The dataset and the algorithms used to build and evaluate the
models in this work are available online to interested researchers
at http://csap.snu.ac.kr/software/lmdataset.

ACKNOWLEDGEMENTS

We thank our shepherd Asim Kadav and the anonymous reviewers
for their detailed feedback and guidance. We also thank Jeongseok
Son for his contribution to the synthetic workload generator used to
generate the dataset in the paper. This work has been supported in
part by grants NRF-2015K1A3A1A14021288 and 2016R1A2B4009193
of the National Research Foundation of Korea and by the Promising-
Pioneering Researcher Program of Seoul National University in
2015. ICT at Seoul National University provided research facilities
for this study.

http://csap.snu.ac.kr/software/lmdataset

A Machine Learning Approach to Live Migration Modeling

REFERENCES

[1] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and Andy Hop-

[12

[13

[14

[15
[16

(17

[18

[19

]

]

]

)

]

per. 2010. Predicting the Performance of Virtual Machine Migration. In Proceed-
ings of the 2010 IEEE International Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (MASCOTS ’10). IEEE Computer
Society, Washington, DC, USA, 37-46. https://doi.org/10.1109/MASCOTS.2010.13
Arwa Aldhalaan and Daniel A. Menascé. 2013. Analytic Performance Modeling
and Optimization of Live VM Migration. In Proceedings of 10th European Workshop
(EPEW ’13). 28-42. https://doi.org/10.1007/978-3-642-40725-3_4

Amazon EC2 - Virtual Server Hosting 2017. https://aws.amazon.com/ec2/. (2017).
Online; accessed August 2017.

Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
’05). USENIX Association, Berkeley, CA, USA, 41-41. http://dl.acm.org/citation.
cfm?id=1247360.1247401

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT '08). ACM, New York, NY, USA, 72-81. https:
//doi.org/10.1145/1454115.1454128

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovi¢, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’06). ACM, New York, NY, USA, 169-190.
https://doi.org/10.1145/1167473.1167488

Leo Breiman. 1996. Bagging predictors. Machine Learning 24, 2 (1996), 123-140.
https://doi.org/10.1007/BF00058655

A. Colin Cameron and Frank A.G. Windmeijer. 1997. An R-squared measure of
goodness of fit for some common nonlinear regression models. Journal of Econo-
metrics 77, 2 (1997), 329 - 342. https://doi.org/10.1016/S0304-4076(96)01818-0
Ron C. Chiang, Jinho Hwang, H. Howie Huang, and Timothy Wood. 2014. Ma-
trix: Achieving Predictable Virtual Machine Performance in the Clouds. In 11th
International Conference on Autonomic Computing (ICAC 14). USENIX Asso-
ciation, Philadelphia, PA, 45-56. https://www.usenix.org/conference/icac14/
technical-sessions/presentation/chiang

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live Migration of Virtual
Machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2 (NSDI'05). USENIX Association,
Berkeley, CA, USA, 273-286. http://dl.acm.org/citation.cfm?id=1251203.1251223
Christina Delimitrou and Christos Kozyrakis. 2013. QoS-Aware Scheduling in
Heterogeneous Datacenters with Paragon. ACM Trans. Comput. Syst. 31, 4, Article
12 (Dec. 2013), 34 pages. https://doi.org/10.1145/2556583

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and QoS-aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 127-144. https://doi.org/10.
1145/2541940.2541941

Li Deng, Hai Jin, Huacai Chen, and Song Wu. 2013. Migration Cost Aware
Mitigating Hot Nodes in the Cloud. In Proceedings of the 2013 International
Conference on Cloud Computing and Big Data (CLOUDCOM-ASIA ’13). IEEE
Computer Society, Washington, DC, USA, 197-204. https://doi.org/10.1109/
CLOUDCOM-ASIA.2013.72

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013), 277-288. https://doi.org/10.14778/
2732240.2732246

Jim Gao and Ratnesh Jamidar. 2014. Machine learning applications for data center
optimization. Google White Paper (2014).

Google Compute Engine 2017. https://cloud.google.com/compute. (2017). Online;
accessed August 2017.

Google Compute Engine uses Live Migration technology to service infrastructure
without application downtime 2017. https://goo.gl/Ui3HFd. (2017). Online;
accessed August 2017.

Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. 2009. Entropy: A Consolidation Manager for Clusters. In Proceedings
of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’09). ACM, New York, NY, USA, 41-50. https://doi.org/10.
1145/1508293.1508300

Michael R. Hines and Kartik Gopalan. 2009. Post-copy Based Live Virtual
Machine Migration Using Adaptive Pre-paging and Dynamic Self-ballooning.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE '09). ACM, New York, NY, USA, 51-60.

[20

[21

[22

[23

[24

[25]

[27]

[28

[29]

&
=

[31

(32]

[33

[34

@
i

[36

(37

[38

[39

[40

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

https://doi.org/10.1145/1508293.1508301

Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. 2009. Live vir-
tual machine migration with adaptive, memory compression. In 2009 IEEE
International Conference on Cluster Computing and Workshops. 1-10. https:
//doi.org/10.1109/CLUSTR.2009.5289170

Changyeon Jo and Bernhard Egger. 2013. Optimizing Live Migration for Vir-
tual Desktop Clouds. In IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom °13), Vol. 1. 104-111. https://doi.org/10.1109/
CloudCom.2013.21

Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. 2013.
Efficient Live Migration of Virtual Machines Using Shared Storage. In Pro-
ceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE °13). ACM, New York, NY, USA, 41-50. https:
//doi.org/10.1145/2451512.2451524

Jonathan Koomey. 2011. Growth in data center electricity use 2005 to 2010. A
report by Analytical Press, completed at the request of The New York Times 9 (2011).
Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik Dutta.
2012. Modeling Virtualized Applications Using Machine Learning Techniques.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE ’12). ACM, New York, NY, USA, 3-14. https://doi.org/10.1145/
2151024.2151028

Jianxin Li, Jieyu Zhao, Yi Li, Lei Cui, Bo Li, Lu Liu, and John Panneerselvam. 2014.
iMIG: Toward an Adaptive Live Migration Method for KVM Virtual Machines.
Comput. 3. 58, 6 (2014), 1227. https://doi.org/10.1093/comjnl/bxu065

Haikun Liu and Bingsheng He. 2015. VMbuddies: Coordinating Live Migration
of Multi-Tier Applications in Cloud Environments. IEEE Transactions on Parallel
and Distributed Systems 26, 4 (April 2015), 1192-1205. https://doi.org/10.1109/
TPDS.2014.2316152

Haikun Liu, Hai Jin, Cheng-Zhong Xu, and Xiaofei Liao. 2013. Performance and
energy modeling for live migration of virtual machines. Cluster Computing 16, 2
(2013), 249-264. https://doi.org/10.1007/s10586-011-0194-3

Zhaobin Liu, Wenyu Qu, Weijiang Liu, and Keqiu Li. 2010. Xen Live Migration
with Slowdown Scheduling Algorithm. In Proceedings of the 2010 International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT ’10). IEEE Computer Society, Washington, DC, USA, 215-221. https:
//doi.org/10.1109/PDCAT.2010.88

Vijay Mann, Akanksha Gupta, Partha Dutta, Anilkumar Vishnoi, Parantapa
Bhattacharya, Rishabh Poddar, and Aakash Iyer. 2012. Remedy: Network-Aware
Steady State VM Management for Data Centers. Springer Berlin Heidelberg, Berlin,
Heidelberg, 190-204. https://doi.org/10.1007/978-3-642-30045-5_15
Memcached - a distributed memory object caching system 2017.
memcached.org/. (2017). Online; accessed August 2017.

Microsoft Azure - Virtual Machines 2017. https://azure.microsoft.com/en-us/
services/virtual-machines/. (2017). Online; accessed August 2017.

M. Mishra, A. Das, P. Kulkarni, and A. Sahoo. 2012. Dynamic resource manage-
ment using virtual machine migrations. IEEE Communications Magazine 50, 9
(September 2012), 34-40. https://doi.org/10.1109/MCOM.2012.6295709

MPlayer - The Movie Player 2017. http://www.mplayerhq.hu/design7/news.html.
(2017). Online; accessed August 2017.

Senthil Nathan, Umesh Bellur, and Purushottam Kulkarni. 2015. Towards a Com-
prehensive Performance Model of Virtual Machine Live Migration. In Proceedings
of the Sixth ACM Symposium on Cloud Computing (SoCC ’15). ACM, New York,
NY, USA, 288-301. https://doi.org/10.1145/2806777.2806838

Senthil Nathan, Umesh Bellur, and Purushottam Kulkarni. 2016. On Selecting the
Right Optimizations for Virtual Machine Migration. In Proceedings of the12th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’16). ACM, New York, NY, USA, 37-49. https://doi.org/10.1145/2892242.2892247
Senthil Nathan, Purushottam Kulkarni, and Umesh Bellur. 2013. Resource Avail-
ability Based Performance Benchmarking of Virtual Machine Migrations. In
Proceedings of the 4th ACM/SPEC International Conference on Performance Engi-
neering (ICPE °13). ACM, New York, NY, USA, 387-398. https://doi.org/10.1145/
2479871.2479932

Michael Nelson, Beng-Hong Lim, and Greg Hutchins. 2005. Fast Transparent
Migration for Virtual Machines. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATEC °05). USENIX Association, Berkeley,
CA, USA, 25-25. http://dl.acm.org/citation.cfm?id=1247360.1247385

Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
2013. AGILE: Elastic Distributed Resource Scaling for Infrastructure-as-a-Service.
In Proceedings of the 10th International Conference on Autonomic Computing (ICAC
13). USENIX, San Jose, CA, 69-82. https://www.usenix.org/conference/icac13/
technical-sessions/presentation/nguyen

Dejan Novakovi¢, Nedeljko Vasi¢, Stanko Novakovi¢, Dejan Kosti¢, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying and Managing Performance
Interference in Virtualized Environments. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (USENIX ATC’13). USENIX Association,
Berkeley, CA, USA, 219-230. http://dl.acm.org/citation.cfm?id=2535461.2535489
Greg Schulz. 2009. The green and virtual data center. Auerbach Publications
Boston.

https://

https://doi.org/10.1109/MASCOTS.2010.13
https://doi.org/10.1007/978-3-642-40725-3_4
https://aws.amazon.com/ec2/
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/S0304-4076(96)01818-0
https://www.usenix.org/conference/icac14/technical-sessions/presentation/chiang
https://www.usenix.org/conference/icac14/technical-sessions/presentation/chiang
http://dl.acm.org/citation.cfm?id=1251203.1251223
https://doi.org/10.1145/2556583
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/CLOUDCOM-ASIA.2013.72
https://doi.org/10.1109/CLOUDCOM-ASIA.2013.72
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
https://cloud.google.com/compute
https://goo.gl/Ui3HFd
https://doi.org/10.1145/1508293.1508300
https://doi.org/10.1145/1508293.1508300
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CloudCom.2013.21
https://doi.org/10.1109/CloudCom.2013.21
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1145/2151024.2151028
https://doi.org/10.1145/2151024.2151028
https://doi.org/10.1093/comjnl/bxu065
https://doi.org/10.1109/TPDS.2014.2316152
https://doi.org/10.1109/TPDS.2014.2316152
https://doi.org/10.1007/s10586-011-0194-3
https://doi.org/10.1109/PDCAT.2010.88
https://doi.org/10.1109/PDCAT.2010.88
https://doi.org/10.1007/978-3-642-30045-5_15
https://memcached.org/
https://memcached.org/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://doi.org/10.1109/MCOM.2012.6295709
http://www.mplayerhq.hu/design7/news.html
https://doi.org/10.1145/2806777.2806838
https://doi.org/10.1145/2892242.2892247
https://doi.org/10.1145/2479871.2479932
https://doi.org/10.1145/2479871.2479932
http://dl.acm.org/citation.cfm?id=1247360.1247385
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen
http://dl.acm.org/citation.cfm?id=2535461.2535489

SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

[41]

[42]

[43]

[44

[45

[46]

[47

(48]

scikit-learn - Machine Learning in Python 2017. http://scikit-learn.org/stable/.
(2017). Online; accessed August 2017.

C. E. Shannon. 2001. A Mathematical Theory of Communication. SSGMOBILE
Mob. Comput. Commun. Rev. 5, 1 (Jan. 2001), 3-55. https://doi.org/10.1145/584091.
584093

SPECweb2009 2017. https://www.spec.org/web2009/. (2017). Online; accessed
August 2017.

Petter Svird, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. 2011. Evaluation
of Delta Compression Techniques for Efficient Live Migration of Large Virtual
Machines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’11). ACM, New York, NY, USA,
111-120. https://doi.org/10.1145/1952682.1952698

Petter Svird, Benoit Hudzia, Steve Walsh, Johan Tordsson, and Erik Elmroth.
2015. Principles and Performance Characteristics of Algorithms for Live VM
Migration. SIGOPS Operating Systems Review - Special Issue on Repeatability and
Sharing of Experimental Artifacts 49, 1 (Jan. 2015), 142-155. https://doi.org/10.
1145/2723872.2723894

The Xen Project 2017. https://www.xenproject.org/. (2017). Online; accessed
August 2017.

Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton. 1985. Preemptable
Remote Execution Facilities for the V-system. In Proceedings of the Tenth ACM
Symposium on Operating Systems Principles (SOSP °85). ACM, New York, NY, USA,
2-12. https://doi.org/10.1145/323647.323629

VMware Virtualization Solutions 2017. http://www.vmware.com/. (2017). Online;
accessed August 2017.

[49

[50

[51

[53

(54

C.Joet al.

William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya.
2009. Cost of Virtual Machine Live Migration in Clouds: A Performance
Evaluation. In Proceedings of the 1st International Conference on Cloud Com-
puting (CloudCom °09). Springer-Verlag, Berlin, Heidelberg, 254-265. https:
//doi.org/10.1007/978-3-642-10665-1_23

Yangyang Wu and Ming Zhao. 2011. Performance Modeling of Virtual Machine
Live Migration. In Proceedings of the 2011 IEEE 4th International Conference on
Cloud Computing (CLOUD ’11). IEEE Computer Society, Washington, DC, USA,
492-499. https://doi.org/10.1109/CLOUD.2011.109

Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li. 2014. iAware:
Making Live Migration of Virtual Machines Interference-Aware in the Cloud. IEEE
Trans. Comput. 63, 12 (Dec 2014), 3012-3025. https://doi.org/10.1109/TC.2013.185
Kejiang Ye, Zhaohui Wu, Chen Wang, Bing Bing Zhou, Weisheng Si, Xiaohong
Jiang, and Albert Y Zomaya. 2015. Profiling-Based Workload Consolidation
and Migration in Virtualized Data Centers. IEEE Transactions on Parallel and
Distributed Systems 26, 3 (March 2015), 878-890. https://doi.org/10.1109/TPDS.
2014.2313335

Jiao Zhang, Fengyuan Ren, and Chuang Lin. 2014. Delay guaranteed live migra-
tion of Virtual Machines. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications. 574-582. https://doi.org/10.1109/INFOCOM.2014.6847982

Jie Zheng, TS Ng, Kunwadee Sripanidkulchai, and Zhaolei Liu. 2013. Pacer: A
Progress Management System for Live Virtual Machine Migration in Cloud Com-
puting. IEEE Transactions on Network and Service Management 10, 4 (December
2013), 369-382. https://doi.org/10.1109/TNSM.2013.111013.130522

http://scikit-learn.org/stable/
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://www.spec.org/web2009/
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/2723872.2723894
https://doi.org/10.1145/2723872.2723894
https://www.xenproject.org/
https://doi.org/10.1145/323647.323629
http://www.vmware.com/
https://doi.org/10.1007/978-3-642-10665-1_23
https://doi.org/10.1007/978-3-642-10665-1_23
https://doi.org/10.1109/CLOUD.2011.109
https://doi.org/10.1109/TC.2013.185
https://doi.org/10.1109/TPDS.2014.2313335
https://doi.org/10.1109/TPDS.2014.2313335
https://doi.org/10.1109/INFOCOM.2014.6847982
https://doi.org/10.1109/TNSM.2013.111013.130522

	Abstract
	1 Introduction
	2 Background
	2.1 Live Migration
	2.2 Live Migration Metrics
	2.3 Live Migration Algorithms

	3 Motivation
	3.1 Meeting Complex SLA Requirements
	3.2 Learning from Big Data

	4 Modeling Live Migration
	4.1 Model Parameters
	4.2 Model Generation

	5 Feature Profiling
	5.1 Lightweight Profiling
	5.2 Profiling Period and Interval
	5.3 Profiling Overhead

	6 Experimental Setup
	6.1 Host and VM Setup
	6.2 Workloads
	6.3 Building the Data Set

	7 Model Evaluation
	7.1 Target Metric Prediction Accuracy
	7.2 Completeness of Input Features
	7.3 Learning and Prediction Overhead
	7.4 Data Set Size vs Model Accuracy
	7.5 Adaptive Termination of Profiling
	7.6 Comparison to the State-of-the-Art

	8 Model-guided VM Migration
	8.1 Live Migration Algorithm Selection
	8.2 Evaluation of Guided Migration
	8.3 Generality and Limitations

	9 Related Work
	10 Conclusion and Future Work
	References

