Int J Parallel Prog (2015) 43:421-439
DOI 10.1007/s10766-013-0295-0

Efficiently Restoring Virtual Machines

Bernhard Egger - Erik Gustafsson -
Changyeon Jo - Jeongseok Son

Received: 3 April 2013 / Accepted: 6 November 2013 / Published online: 22 November 2013
© Springer Science+Business Media New York 2013

Abstract Saving the state of a running virtual machine (VM) for later restoration
has become an indispensable tool to achieve balanced and energy-efficient usage of
the underlying hardware in virtual desktop cloud environments (VDC). To free up
resources, a remote user’s VM is saved to external storage when the user disconnects
and restored when the user reconnects to the VDC. Existing techniques are able to
reduce the size of the checkpoint image by up to 80 % by excluding duplicated memory
pages; however, those techniques suffer from a significantly increased restoration time
which adversely affects the deployment of the technique in VDC environments. In this
paper, we introduce a method to efficiently restore VMs from such space-optimized
checkpoint images. With the presented method, a VM is available to the user before the
entire memory contents of the VM have been restored. Using a combination of lazy-
fetch and intercepting accesses to yet unrestored pages we are able to reduce the time-
to-responsiveness (TTR) for restored VMs to a few seconds. Experiments with VMs
with 4 GB of memory running a wide range of benchmarks show that the proposed
technique, on average, reduces the TTR by 50 % compared to the Xen hypervisor.
Compared to the previously fasted restoration of space-optimized checkpoints, the
proposed technique achieves a threefold speedup on average.

B. Egger (X)) - E. Gustafsson - C. Jo - J. Son
School of Computer Science and Engineering,
Seoul National University, Seoul, Korea
e-mail: bernhard @csap.snu.ac.kr

URL: http://csap.snu.ac.kr/

E. Gustafsson
e-mail: erik@csap.snu.ac.kr

C.Jo
e-mail: changyeon@csap.snu.ac.kr

J. Son
e-mail: jeongseok @csap.snu.ac.kr

@ Springer

422 Int J Parallel Prog (2015) 43:421-439

Keywords Virtualization - Checkpointing - Performance

1 Introduction

In recent years, virtualization has gained wide adoption in enterprises. Virtualization
enables the consolidation of servers to reduce hardware cost, simplifies server man-
agement, and empowers enterprises to deploy massive virtual desktop infrastructures
(VDI) [1] and virtual desktop clouds (VDC) [2]. In VDI/VDC environments, users
connect remotely to their desktop running in a VM in the cloud [3]. While the con-
tents of the virtual desktop persist across different sessions, the VM itself need not
be active between sessions. To free up resources in the cloud, the VDC solution may
choose to save the state of a user’s VM to external storage and restore it when the
user re-connects to his virtual desktop. With ever increasing amounts of memory allo-
cated to VMs, the space-overhead of taking a snapshot (also called checkpoint) of a
VM becomes more and more of a concern. The size of a running VM’s snapshot is
dominated by the amount of memory available to that VM [4]. Unless other measures
are taken, a snapshot consumes at least as much space as it has memory. With typical
memory sizes of 4 and more GBs, the space consumed by snapshots of inactive VMs
becomes significant [5].

An even bigger problem is the time required to restore a VM. The snapshot of a
VM is taken after the user terminates his session and thus goes unnoticed by the user.
The time to restore a VM, however, is critical since the restoration process typically
begins as soon as the user starts a new session. Assuming 8 GB of memory in the VM
and the (unrealistic) single-user case where the full disk bandwidth of 200 MB/s is
available, the restoration process from a snapshot would require more than 40 s before
the VM becomes available to the user. Such a long time-to-responsiveness (TTR), i.e.,
the time until the VM is running and responsive [6], effectively prevents wide adoption
of automatic snapshot/restoration for VDCs.

Several techniques have been proposed to address both the space- and time require-
ments of checkpointing and restoring a VM. Methods that aim at reducing the size
of the snapshot [7-9] achieve a smaller checkpoint image at the expense of a longer
restoration time or a reduced performance of the VM after restoration. Techniques that
aim at fast restoration of VMs [6,10], on the other hand, achieve the short restoration
time at the expense of increased disk space or a reduced performance of the VM.

In this work, we combine space-optimized snapshots with an efficient restoration
technique. A space-optimized snapshot as proposed by Park et al. [8] excludes memory
pages whose contents are duplicated on disk from the snapshot image. Most modern
operating systems use some form of I/O buffering in main memory; hence the amount
of duplication especially for long-running VMs is significant. Park et al. report a space-
reduction of up to 80 % compared to standard snapshot images. The proposed technique
restores a VM from a space-optimized snapshot by first loading the contents of the
snapshot image into memory and then immediately restarting the VM. Duplicated data
is read directly from external storage by a background process. In order to minimize
the TTR a number of optimizations have been explored.

This paper makes the following contributions:

@ Springer

Int J Parallel Prog (2015) 43:421-439 423

— We present a technique that reduces the restoration time of VMs from space-
optimized snapshot images by delaying the loading of the entire memory contents
of the VM. We identify and correctly handle all scenarios that could lead to a
corruption of the VM’s memory image during the delayed loading phase.

— We have implemented the proposed technique in the Xen VMM 4.1 environment
and conduct a wide range of benchmarks with fully-virtualized VMs running Linux.

— We compare our work to original Xen, space-optimized snapshots [8], and the
method presented by Zhang et al. [6]. In comparison with original Xen the proposed
methods achieves a 50 % shorter TTR; compared to the restoring space-optimized
snapshots, the presented method achieves a threefold speedup. Furthermore, the
proposed method achieves a similar TTR to that of Zhang et al.’s approach [6]
without any of the limitations of their method.

The rest of the paper is organized as follows. Section 2 discusses related research
and gives a short introduction on virtualization and checkpoint/restore functionality.
Section 3 describes the proposed technique in detail. The experimental setup and
the results are discussed in Sects. 4 and 5. Finally, Sect. 6 concludes this paper and
discusses future work.

2 Background and Related Work

Checkpointing and restoration techniques have been extensively studied in the operat-
ing systems community, typically in the context of failure recovery or fault tolerance
in distributed systems. In that context, a number of researchers have tackled the prob-
lem of reducing the size of the checkpoints [11-13] or reducing the time to recover
from a failure [14,15]. Plank et al. [11] propose compiler-assisted memory exclu-
sion in which read-only or unused memory regions are excluded from incremental
checkpoints. Heo [12] and Yi [13] optimize the disk space required for incremental
checkpoints and the time to recover from them. Baker et al. [14] propose the use of
a “recovery box” to store crucial process state needed for fast recovery. Li et al. [15]
improve the recovery time from a process failure by tracking which pages are accessed
immediately after taking a checkpoint. Upon a failure and the subsequent recovery,
these pages are loaded first, and then the process is restarted.

In the context of virtual execution environments physical memory allocation to VMs
and related functionality such as checkpointing, live migration, fault tolerance, and
logging with replay have recently received a lot of attention in the research community.
Reclaiming memory from a running VM without affecting its performance is not easy
as the VMM has limited knowledge of a memory page’s importance to the VM.
A common technique is Ballooning [7] in which the VMM communicates with a
driver running inside the VM. The ballooning driver requests non-shared memory
that then cannot be used by the guest OS any more. The VMM can then reclaim
this memory and allocate it to another VM. Most major VMMs, such as KVM [16],
VMware [17], VirtualBox [9], and Xen [18], make use of the ballooning technique to
reclaim memory from a running VM. The disadvantage of ballooning is that it requires
a special driver running inside the VM which may be a problem in security-oriented
setups. Additionally, the technique is built on the premise that the operating system

@ Springer

424 Int J Parallel Prog (2015) 43:421-439

will page out unused pages or drop the page cache. Both measures lead to reduced
performance of the VM due to increased I/O activity.

In VDI/VDC environments users connect to their desktop from a remote terminal
using a protocol such as PColIP. The desktop runs in a virtual machine. When users
terminate the connection to the virtual desktop, the VM may be stopped and swapped
out to disk to free up resources for other VMs. This process involves checkpointing
the user’s VM. As soon as the user reconnects to his desktop, the VM must be restored
from the checkpoint.

A checkpoint of a running VM includes its disk, the volatile memory, the state
of the (virtual) CPUs and all connected virtual devices. Typically, the disk of a VM
does not need to be checkpointed since it is not shared between VMs or users. The
checkpoint image thus comprises the VM’s volatile state: its memory contents and the
state of the VCPUs and all connected devices. To this day, all major VMMs [9,16-18]
store a one-to-one memory image to disk. Even though some VMMs try to exclude
unallocated pages or compress the data, the size of a checkpoint image is in the order
of the VM’s memory: a VM with 8 GB of RAM will produce an 8 GB checkpoint
file. Accordingly, the time to create a checkpoint is dominated by the time required to
write the memory data to disk.

2.1 Space-Optimized Snapshots

Researchers have proposed three techniques to reduce the size of a snapshot: (1)
compress the checkpoint image, (2) exclude unused memory from the checkpoint
image, and (3) exclude data that is available somewhere else, i.e., duplicated data,
from the checkpoint image. The first technique, compressing the checkpoint image, is
implemented in VirtualBox [9]. Compression has been found not to be very effective
for checkpoint images [6]. The effectiveness of excluding unused memory depends
on how much of memory the VM actually uses. Most OSes use unused memory as
caches which reduces the amount of unused memory. This technique is also not easy
to implement for fully-virtualized guests because the VMM has no a priori knowledge
how the VM organizes its memory. Ballooning [7] tries to overcome these difficul-
ties by allocating memory from the guest OS which can then be excluded from the
snapshot.

Excluding duplicated data from checkpoint images has recently been proposed in
prior work by Park et al. [8]. The technique is based on the observation that OSes
cache disk blocks in memory to hide the long latency to external storage. This so-
called page cache often occupies the better part of the available memory; page caches
occupying 80 % of the available physical memory are common. The contents of the
vast majority of blocks present in the page cache exist in identical form on disk; the
exception are dirty blocks, i.e., write-cached blocks that are about to be written to disk.
Park intercepts all I/O operations from the VM to external storage, and maintains an
up-to-date mapping in the so-called page map. The page map contains an entry
for each memory page in the VM’s memory that is known to exist in identical form on
external storage. To ensure consistency, duplicated pages must be mapped read-only
in the VM’s address space. A subsequent memory write operation to such a page then

@ Springer

Int J Parallel Prog (2015) 43:421-439 425

() memory
D unknown memor}f contents che ckpoint /
B copy of data on disk restore
[] vepu/device state
MO page map data
crU
L VM domO

0123456 N-1
I

7 8
ST el [[21s] ~ [] page map

VMM

checkpoint image

optimized checkpoint image

VM disk

Fig. 1 Optimized checkpoint images

causes a page fault which is intercepted by the VMM and the mapping is removed from
the page map. When a snapshot is taken, pages that have a known mapping to disk
blocks, i.e., are present in the page map, are excluded from the optimized checkpoint
image. Instead, the information of the page map is included in the snapshot image.
Figure 1 illustrates the concept. Park reports no measurable slowdown by the I/O
tracking. The method achieves a significant reduction in space and time for taking
checkpoint images: on average, the optimized checkpoint image is reduced to 20 %
of the size and saved in one third of the time compared to original Xen. The main
disadvantage of Park’s technique is that the time required to restore a VM from an
optimized checkpoint image increases significantly. While a complete snapshot can be
read with few /O operations, restoring a VM from an optimized checkpoint requires
loading the duplicated pages directly from the VM’s external storage in possibly
many, small I/O requests. The associated high seek overhead observed on mechanical
(spinning) disks leads to a 50 % slowdown, on average, when restoring a VM with
4 GB of memory.

2.2 Optimized Restoration

Optimized restoration aims at reducing the time between the start of the restore and
the time when the VM becomes available. The main idea here, lazy fetching, has been
borrowed from live process/VM migration [19]. In a lazy-fetch scheme the restora-
tion process starts the VM immediately, without restoring any or or only a small
part of the memory. Whenever the VM tries to access memory that has not been
restored yet, a page fault is triggered and the requested data is loaded from external
storage. A number of optimizations to a pure lazy-fetch scheme have been proposed

@ Springer

426 Int J Parallel Prog (2015) 43:421-439

to alleviate the slowdown experienced immediately after the VM has been restored.
This slowdown is caused by the high number of page faults caused by accesses to
yet unloaded pages. The most common technique in this direction is working set
estimation [20].

Recently, Zhang et al. [6] have presented an implementation of lazy-fetch with
working set estimation for VMWare checkpoint images. Since no working set infor-
mation can be inferred from a VM’s checkpoint, the working set has to be traced
before/while the checkpoint image is saved to disk. The former, tracking accesses to
pages before the checkpoint is taken, requires intercepting all memory operations and
thus leads to reduced performance of the VM. For the latter, recording the working
set while the snapshot is taken, the VM must be allowed to run for a short period of
time after the checkpoint has been initiated. In their paper Zhang et al. use the latter
method. The technique requires two copies of the snapshot image: one created when
taking the checkpoint, and one when restoring it. This time and space overhead caused
by creating copies of snapshots several GBs large renders this approach unsuitable for
fast restoration in VDI/VDC environments.

Our technique improves the restoration process from optimized checkpoints [8].
The proposed technique enables VDI/VDC providers to restore VMs from space-
optimized images within a few seconds. The next section describes the proposed
method in detail.

3 Efficiently Restoring VMs from Checkpoints

The goal of efficiently restoring VMs is twofold: first, minimize the time until the VM
becomes available to the user. Second, minimize the performance degradation of the
VM after it has been restored.

The first goal can be achieved by starting the VM immediately after the VCPUs
and the device states have been initialized. Memory accesses to pages that have not yet
been loaded are intercepted and trigger restoring the page from the snapshot image.
The almost immediate instantiation of the VM comes with a severe performance
degradation caused by frequent page faults and the corresponding I/O activity. A
common approach is thus to pre-load the working set of the VM before restarting
it [6]. In addition to pre-loading the working set, we also propose a background thread
which fetches yet unloaded pages into the VM’s memory while the VM is running
and several other optimizations to reduce the number of page faults. The following
sections describe the design and implementation in detail.

3.1 Fast Restoration of a VM

The proposed technique is built on top of space-optimized checkpoints. The opti-
mized checkpoints are similar to those proposed in [8] but extended to include addi-
tional information about the order in which duplicated pages were recognized. This
information approximates the working set amongst the duplicated pages.

Restoring a VM from an extended optimized checkpoint progresses in the following
steps:

@ Springer

Int J Parallel Prog (2015) 43:421-439 427

1. Instantiation Instantiate the VM with VCPUs, devices, and memory pages from the
data stored in the checkpoint image. While original Xen loads the entire contents
of the memory from the snapshot image, memory pages containing duplicated data
are not loaded but instead mapped read-only. We also create a background fetch
process and initialize its lazy fetch queue (see below) with the list of pages that
need to be loaded from external storage.

2. Pre-loading The pre-load phase loads the pages most recently added to the page
map into the VM’s memory before the VM is restarted. Pre-loading of pages is
handled by the background process; the VMM simply waits for the process to
finish loading of all pages designated to be in the pre-load set.

3. Starting the VM At this moment, the VM starts running and becomes accessi-
ble to the user. Note that the proposed method aims at minimizing the time-to-
responsiveness: the TTR for a certain minimal utilization is typically only reached
after the VM has been running for several seconds.

4. Lazy Fetch A background process in the VMM fetches the data of memory pages
that have not yet been loaded from the VM’s disk. For that purpose, the background
fetch process maintains a lazy fetch queue which is initialized with the contents of
the page map contained in the optimized checkpoint image. This is illustrated in
Fig.2 by the arrows labeled (a) . The lazy fetch queue consists of triplets containing
the memory page number, denoted PFN (page frame number), the index of the
(first) disk block, denoted block number (memory pages are typically bigger
than one disk block, but written to consecutive disk blocks), and a stale flag (see
below). Minimizing both the number of I/O requests and the disk seek overhead
are key to achieve a short TTR. The lazy fetch queue is thus sorted in ascending
order of the disk block number. A second index sorted by the PFN is maintained
to allow efficient searches for memory pages. The background fetch process starts
processing the elements in the lazy fetch queue immediately after the VM has been
restarted. Communication with the VMM hypervisor is done asynchronously via

memory [restored page, loaded from optimized checkpoint image background fetch process
[restored page, has been loaded from the VM’s disk
[disabled page, yet to be loaded from the VM’s disk lazy fetch queue

3 4 5 1213

(@
(b)

Y

T/O intercept (C) page fault handler
VMM |
- (a)

optimized checkpoint image -

[[J memory data [[] vepu/device state [[] page map data VM disk

Fig. 2 Efficiently restoring VMs from an optimized checkpoint image

@ Springer

428 Int J Parallel Prog (2015) 43:421-439

a ring buffer. The process priority of the background fetch process is lowered to

give I/O requests of VMs higher priority.

5. Page-fault Handling Page faults triggered by the VM accessing a memory page
that has not yet been restored are handled by the VMM’s page fault handler. The
requested page is loaded into the VM’s memory, and the aborted instruction is
restarted. The arrows labeled (b) in Fig. 2 illustrate this scenario.

The Xen hypervisor receives and dispatches all page faults that have been triggered
by a VM violating the access permissions of a memory page. There are several possible
sources of a page fault:

1. the guest OS inside the VM has deliberately mapped a memory page invalid,
for example, to implement paging or catch null pointer dereferencing. Such page
faults must be forwarded to the VM.

2. page faults caused by the paging mechanism of Xen. Such page faults are forwarded
to and handled by xenpaging.

3. page faults triggered by an access to a lazily-fetched memory page that has not
yet been loaded. These page faults need to be forwarded to the background fetch
process.

The first two sources are already implemented and properly handled by the Xen
hypervisor. The newly introduced third case can easily be distinguished from the other
two causes by inspecting the PTE. The Xen hypervisor requests xenpaging to load
the page which then notifies the background fetch process through a mailbox. The
background fetch process checks the mailbox before loading the next element in the
lazy fetch queue, i.e., handles page fault requests with high priority (Algorithm 1).
As soon as the page has been loaded from external storage, the background process
signals completion to xenpaging which then performs a hypercall to the hypervisor
to resume the VM.

Page faults can occur while the data of a page is being loaded by the background
fetch process. This can happen in any stage of the process of restoring a single page.
The background fetch process restores the access permissions to the pages it has just
loaded, and since the hypervisor and xenpaging communicate through a buffer, it
is possible that the background fetch process in xenpaging receives a page fault
for a page that has just been restored. Xenpaging checks the page’s PTE before
forwarding the request to the background fetch process. If the access permissions
have already been restored, it silently ignores the request and resumes the VM. If the
access permissions have not been restored yet, the request is send to the background
fetch process which will simply discard the request and signal completion back to
xenpaging.

3.2 Maintaining Consistency

Other than related work [6], the proposed method loads the memory contents directly
from the VM’s disk. Since the VM starts running before the entire memory has been
restored, all I/O requests to disk need to be intercepted to ensure consistency. All I/O
requests issued from a HVM guest pass through i oemu. We have modified i oemu to
intercept and properly deal with each of the three possible causes of inconsistencies.

@ Springer

Int J Parallel Prog (2015) 43:421-439 429

background
fetch

lazy fetch queue

il 3 405

background
fetch

lazy fetch queue

background
fetch

lazy fetch queue

3 4 5

write to block 5 read to page 1 write to disk from

page 8
L i
700 I ;

VMM

VM disk VM disk VM disk
(a) (b)

Fig. 3 The three race conditions that need to be handled to maintain consistency

Disk write race condition This situation occurs when the VM writes data to a disk
block which has yet to be loaded by the background fetch process. If the write request
is processed before the original data has been loaded, this will cause the background
fetch process to read invalid data into memory. Figure 3a illustrates the case where
the VM tries to write memory page 3 to disk block 5. Disk block 5, however, is still
needed to restore the contents of memory page 1.

To detect a disk write race condition from a page m to a disk block b, ioemu
searches the lazy fetch queue for an entry with disk block number b. If it finds such an
entry, it sends a message requesting a high-priority load of block b to the background
process. After loading the data into memory, the background process sends a message
back to ioemu which then executes the write request initiated by the VM.

Disk read race condition The disk read race condition manifests itself when the
VM reads data from disk into a page which has not yet been restored. This situation
may occur if the guest VM discards the data of a memory page in the page cache
and uses the page for another purpose. If the background fetch process later loads
the data from disk, it will overwrite the newer data with old data which would lead to
memory corruption. For disk read requests, the corresponding (and now stale) entry for
the affected memory page can simply be discarded if the read request spans the entire
memory page. For sub-page requests (for example, if the guest OS loads new data only
into one half of the affected page), the affected page has to be loaded into memory
before the read request can be executed. Figure 3b illustrates an example where the
VM reads data from a disk block into memory page 1. Later, the background fetch
process will load disk block 5 into memory page 1, thereby overwriting the new data
from block 9 with the old data from disk block 5.

To detect a disk read race condition from a block b to a memory page m, ioemu
searches the lazy fetch queue for an entry with the same memory page m. If such an
entry exists, ioemu marks the entry as stale and continues with the read request.
Since there is no explicit synchronization between ioemu and the background fetch
process in this case, the latter checks the stale flag twice when processing an

@ Springer

430 Int J Parallel Prog (2015) 43:421-439

element: once before loading the data from disk and once before copying the data
into the VM’s memory. If the stale flag is set before the data is loaded, the element
is simply discarded. If the flag is set before copying the data, then 1 oemu may already
have loaded the data from some other disk block and the copy operation is skipped.
To prevent a race on the flag between reading the flag the second time and copying the
data, the background process checks the flag and executes the copy operation inside a
critical section.

Writing data to disk from a page that has not yet been loaded This race condition is
less obvious and caused by the way VMMs virtualize the disk. Disk I/O requests are
not sent directly to the (physical) disk, but go through a virtualization driver. In Xen
4.1, this driver runs in its own privileged driver domain. The guest OS’ write request
includes the address of the data to be written to disk in its own address space. This
address is passed as a pointer, and because the data itself is not accessed so no page
fault occurs. The privileged driver domain will eventually read the data from the page.
However, since it has direct access to the VM’s memory pages no page fault is raised
and, consequently, corrupted data is written to disk.

To detect such writes, the I/O request is compared against the lazy fetch queue. If
the affected memory page is still in the queue it is processed immediately. Then the
I/0O operation is resumed. Figure 3c illustrates the case where the VM writes memory
page 8 to a disk block. Page 8, however, has not yet been loaded by the background
fetch process. Since the VMM has unlimited access to the VM’s memory, corrupt
data is written to block 0 without I/O interception. In this last case, the VM requests
to write data from memory page m to disk block b. Toemu searches the lazy fetch
queue for an element with PEN m, and if it detects such an element sends a request
to the background fetch process. The background process loads the data from disk,
copies it into the memory page m, and enables the PTE for the page. However, 1 oemu
has already copied the data from the VM’s memory into its own I/O buffers that
now contain invalid data. The data of the requested page is thus sent along with the
confirmation message back to ioemu which replaces the data into the I/O buffers
before executing the write request. This is indicated by the dotted red arrow pointing
back to the VMM in Fig. 3c.

Modern OSes perform the majority of the disk I/O on page granularity. I/O requests
on a sub-page granularity are not tracked since doing so adds significant complexity
but offers only a very modest reduction in the checkpoint image size. In the case
of disk read races special care needs to be taken in the ioemu process to ensure
correctness. The page request cannot be dropped by setting the stale flag, instead,
ioemu requests a high-priority load of the page in question and waits for completion.
Writes to yet unloaded pages are treated in a similar way.

3.3 Achieving a Short Time-to-Responsiveness
To achieve good performance after restarting a VM, it is important to minimize the
number of page faults as well as the number of disk I/O operations caused by the

background fetch process. The performance of the VM is much better when the lazy
fetch queue is sorted by disk block number. This is somewhat counter-intuitive to

@ Springer

Int J Parallel Prog (2015) 43:421-439 431

Algorithm 1 Background Fetch Process

Input: page map from snapshot image
[fq < page map
while (not [fg.empty) do
if (page fault pending) then
block < block which caused the page fault
else if (high priority load pending) then
block < pending block
else
block < next block in Ifg
end if

blocks < coalesce(block)
read(blocks)

for each block b in blocks do
if (not b.stale) then
copy data to VM memory
end if
remove b from [fq
end for
end while

the principle of locality according to which the lazy fetch queue should be sorted
by PFNs, the memory page numbers. The reason why the former performs better is
that it (a) reduces the disk seek overhead and (b) allows coalescing and loading of
consecutive entries in one I/O request. The maximum number of pages coalesced into
one request is a design parameter: if we allow only a few pages to be loaded by one /O
request, the number of I/O requests increases. If too many pages are bundled into one
request, then fetching the data will take more time which will cause the TTR to drop.
This trade-off is analyzed in the result section (Sect. 5). Coalescing is implemented
with optional hole support: entries that are not consecutive but separated by only a
few blocks (“holes”) are coalesced in order to minimize the number of page faults
(Algorithm 2).

The disk optimizations used in this paper aim at spinning disks since those are still
the most commonly found non-volatile storage medium in computers today. Solid-state
drives (SSDs) may require different optimizations since they incur no seek overhead.

3.4 Implementation

Algorithms 1 and 2 illustrate the background fetch process and the coalescing in
pseudo-code form. The background fetch process (Algorithm 1) is created during the
instantiation step (see Sect. 3.1). The lazy fetch queue, Ifq, is a doubly-linked list
sorted in ascending disk block order and initialized with the page map from the
snapshot image. Each element in the list represents a duplicated memory page whose
contents still have to be restored, i.e., the background fetch process terminates as soon
as the lazy fetch queue is empty. Page faults and other high-priority requests are sent to
the background process and handled first. To achieve a better overall responsiveness,

@ Springer

432 Int J Parallel Prog (2015) 43:421-439

Algorithm 2 Coalesce

Input: block block to load, ¢f coalescing factor
max_blocks < 0
max_set < &
for start < block — cf — 1to block + cf — 1 do
num_blocks < 0
set < &
for b < start to start + cf do
if (b € [fq and not b.stale) then
num_blocks < num_blocks + 1
set < set + {b}
end if
end for
if (num_blocks > max_blocks) then
max_blocks < num_blocks
max_set < set
end if
end for
return max_set

outstanding load operations of blocks around the selected block are coalesced (see
below), then read into a memory buffer. Each loaded block’s stale flag is then checked
again (see Sect. 3.2) before the data is copied into the VM’s memory and the page is
enabled.

The implementation of the coalescing method is outlined in Algorithm 2. The
method checks each span of cf, the maximum coalescing factor, blocks around the
selected block and then selects the span with the most outstanding blocks. The actual
implementation is optimized to use a single for-loop and a ring buffer with a runtime
of O(cf) instead of the nested for-loops.

4 Experimental Setup

We have implemented the proposed technique in the Xen hypervisor version 4.1.2 [21]
on a machine with an Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz, 16 GB RAM,
and a Western Digital HDD with a maximal read throughput of 170 MB/s. DomO runs
Ubuntu Server 12.04.1 LTS. The guests have been configured to run Ubuntu 10.04
with 4 GB of RAM and 2 VCPUs.

We have executed a number of different benchmarks representing various usage
patterns that have used in related work. Table 1 lists the benchmarks. The user ses-
sions benchmarks include the movie and desktop benchmark. For the movie
benchmark, a movie is played. The desktop benchmark contains active office and
Internet programs controlled by automation scripts. Gzip compresses a large file; this
benchmark is both I/O and CPU-intensive. Make compiles the Linux 2.6.32.60 kernel
and represents a CPU-intensive benchmark. Copying a file and running Postmark are
I/O-intensive loads (copy and postmark).

To create the snapshots the VM for each benchmark is booted up and idles for
some time, then the actual benchmark is started inside the VM. The snapshot is taken
before the benchmark finishes in order to measure the benchmark performance across a

@ Springer

Int J Parallel Prog (2015) 43:421-439 433

Table 1 Benchmark scenarios

and snapsho size Benchmark Description Size of snapshot (%)
movie Playing a movie (file size: 23
700MB) using mplayer
desktop Four Libre Office Writer 23

documents of about 10 MB
each, Firefox with four
open tabs

gzip Compressing a fileof 512MB 51
random data using gzip

make Compiling the Linux 32
2.6.32.60 kernel (default
configuration)

copy Backing up a file of 1 GB in 17
size

postmark File system benchmark (128 40
files, 400 transactions, file
size 4K-10M)

checkpoint/resume cycle. The third column in Table 1 displays the size of the optimized
snapshot compared to that of unmodified Xen (4 GB).

All experiments are performed on fully-virtualized (HVM) guests. The proposed
technique can also be applied to para-virtualized (PV) guests; in fact, PV guests will
achieve better results thanks to the possible interaction between the hypervisor and the
guest OS. For example, currently unused memory pages have to be saved and restored
for HVM guests because no assumptions can be made about the memory management
of the guest OS. For PV guests, unused memory pages can be easily excluded and
need not be restored.

5 Experimental Results

The proposed technique aims at reducing the restoration time while keeping the per-
formance degradation of the VM to a minimum. The two measures of interest are thus
(1) the time until the VM is restarted and (2) the performance degradation introduced
by the proposed lazy fetch technique. Zhang proposes the 7T R(w, u), the time-to-
responsiveness measure [6], which denotes the point after which a VM achieves a
certain minimal utilization u within a given time-window w. We compare the pro-
posed method to the unmodified Xen hypervisor, the method proposed by Park [8],
denoted orig. pagecache, and Zhang’s technique.

5.1 Restoration Time

The restoration time denotes the duration from initiating the restoration of a check-
point until the VM starts running. For unmodified Xen and the proposed method, the
time to restore a VM from a snapshot is proportional to the size of the checkpoint
image. Unmodified Xen always loads 4 GB of data independent of the benchmark;
with our method the amount of data depends on the amount of duplication in the VM.

@ Springer

434 Int J Parallel Prog (2015) 43:421-439

| Horig.pagecache ®none =64 MB m[28 MB m256 MB|

1.0 4

0.5 1

norm. rest. time

0.0 4

T SO S QOM\&

Fig. 4 Normalized restoration time without working set pre-loading

e———pone =64 MB 128 MB =====256 MB |

1.0

normalied #
pagefaults
j=]
W

0.0

1 4 8 32 128
coalescing factor

Fig. 5 The effect of pre-loading and coalescing on the number of pagefaults

Orig.pagecache loads the duplicated pages from the VM’s disk image and thus
incurs a significant overhead. Figure 4 shows the results for orig.pagecache and
the proposed method with none, 64 MB, 128 MB,and 256 MB of working-set pre-
loading. Even though we have optimized the restoration method in Park’s approach,
orig. pagecache, reading the duplicated data from external storage results in an
average slowdown of around 40 %. The proposed method requires, on average, only
40 % of the time of unmodified Xen to restore a VM if no working-set preloading is
performed.

Figure 5 shows the effect of pre-loading 64, 128, or 256 MB of the working-set
on the number of page faults in dependence of the coalescing factor averaged over all
benchmarks. If no coalescing is performed, i.e., only the next page in the lazy-fetch
queue or the page that triggered a pagefault is loaded, then preloading 256 MB of
data results in a 30 % reduction of page faults. We observe that the coalescing factor
has a much more significant effect on the number of pagefaults than working-set
preloading. For a coalescing factor of 32 without preloading, for example, the number
of pagefaults is reduced to 7 %, and preloading 256 MB of data reduces this number
only by an additional 2 %. The reason for the poor performance of preloading can be
explained by the way the working set is defined: since we only track the promotion of
disk blocks into memory but not subsequent memory operations to the corresponding
page, the accuracy of the working set is rather poor. Maintaining an accurate working

@ Springer

Int J Parallel Prog (2015) 43:421-439 435

set would require tracking memory read accesses to duplicated pages; this would incur
an unacceptably high overhead.

The increase in restoration time caused by pre-loading by far outweighs its benefits.
Therefore, in the remaining experiments no WS pre-loading is performed.

5.2 Time-to-Responsiveness

While unmodified Xen and previous work restore the contents of the VM in its entirety,
the proposed technique restarts the VM before pages duplicated on disk have been
loaded. A background process is loading these pages into the VM’s memory while the
VM is running; nevertheless, the VM may try to access a page that has not yet been
restored. The page fault triggered by this access causes the VMM to stop the VM,
handle the page fault by loading the requested page, before the VM and the aborted
instruction can be restarted.

To measure the performance degradation of the restored VMs, we adopt the same
approach as Zhang [6]: even though the VM is restored and running after a few seconds,
frequent page faults interrupt the VM and reduce the performance to the point where
the VM appears unresponsive to the user. Our goal is thus to measure the point in time
from which on forward the VM always achieves a certain minimum utilization. This
measure is represented by the time-to-responsiveness and is defined as

TTR(w,u) =min {t|MMUv,/Z,(w) > u}

where MMU (w), the minimum mutator utilization, denotes the minimal level of
utilization (CPU time) the mutator (the VM) achieves in a given time window w. A
TTR(1.0s,80%) = 5s, for example, states that after five seconds the VM always
achieves at least 80 % utilization within any 1-s window. The time window w and
the desired utilization u are application-specific parameters. Similar to Zhang [6],
we set w = 1.0s and u = 80 % for interactive benchmarks (movie, desktop) and
u = 50 % for the non-interactive benchmarks (gzip, make, copy, and postmark).

Handling a page fault stops the VM and thus reduces the level of utilization available
to the VM. To achieve a short TTR, it is imperative to reduce the number of pagefaults
at much as possible, and to trigger page faults early or avoid them all together. As
shown in Fig. 5, coalescing is very successful at reducing the pagefaults. Since the
VMM has no knowledge of which pages the VM is going to access, triggering page
faults early is impossible. Instead, we can try to avoid page faults by fetching the
pages that have not yet been loaded from external storage by a background process.
Figure 6 shows the effect of the different optimizations on the number of pagefaults
for (a) desktop, a representative of an interactive benchmarks, and (b) postmark.
The other benchmarks exhibit a similar behavior.

Innaive lazy only 32-page coalescing is enabled. Hole support supports
coalescing even if not all pages are consecutive. Backup support enables coa-
lescing in both directions of the page fault and finds the optimal window of 32 pages
that still includes the page fault but results in the most pages loaded. Background
fetch shows the effect of fetching pages in the background using the lazy-fetch

@ Springer

436

Int J Parallel Prog (2015) 43:421-439

7000 12000
6000 10000
Z ig £ s000
= =
S S
g" 3000 E" 6000
2 2000 & 4000
1000 2000
0 0
R ot ot [ECC RV ot ot [CC
e sop? sup¥ 0 . ozt e sup? sup? nd L At
o o\ I Acke® \,ac\‘%‘o“ & g™ ! noe acke® wc\‘go“ Ry ot
(a) (b)
Fig. 6 The effect of optimizations on the number of page faults. a desktop, b postmark
| e aive =====hole =====backup =====bg fetch === all e—Q]VE === hole ===—Dbackup =====bg fetch ====all
1.0 H’ ” 1.0 I
508 T 1 g 08 -
£ £
Foe fl T 06
3 04 4 S04
£ £
£ 0.2 ‘E 02
0.0 T T T T T 0.0 T T T
0 50 100 150 200 250 sec 0 100 200 300 sec
(@) (b)
e==najve =====hole =====backup =====bg fetch ====all e——=naive =====hole =====backup =====bg fetch ====qll |
1.0 1.0 r J
£ 08 s 08 A
£ 5
=] k=4 ,_)
Sos 3 0.6
= =
S04 =04
£ =
£ 02 ‘E 02
0.0 0.0
0 50 100 sec 0 100 200 300 sec
(0 (d)
— naTVE hole e====backup =====bg fetch === all —12TVE hole e====backup =====bg fetch === all
1.0 1.0 4 j r
g 0.8 E 0.8 7
=] — I
Sos 3 0.6
= =
=04 504
]]
-} 4 —_—
g 02 g 02
Pr—
0.0 T T T 0.0 T T T T
0 200 400 600 sec 0 100 200 300 400 sec

(e)

(®

Fig. 7 The effect of optimizations on the time-to-responsiveness. a desktop, b postmark, ¢ movie, d gzip,

e make, f copy

queue. Finally,all optimizations shows the results when all optimizations are
enabled. The results clearly show the effectiveness of the background fetch process.
This is not obvious: the duplicated data mostly stems from the guest OS’es page cache,
and it is not a priory clear whether reloading the page cache is more beneficial than
simply dropping the page cache and fetch the pages again.

@ Springer

Int J Parallel Prog (2015) 43:421-439 437

M restoration ®TTR

1.0

0.8

0.6

0.4 4

0.2 4

normalized to unmod. Xen

0.0 -
e ; & e
oo 5 RYCC A S 00@‘)0%“0@&\“ (A\Ie@%

Fig. 8 Restoration time and TTR

In Fig. 7 the effect of the different optimizations on the minimal mutator utilization
and the TTR is shown. Since the TTR measures the latest point in time after which
a certain minimal utilization can be guaranteed, a series of page faults long after the
VM has been started will result in a high TTR value. Is is thus not surprising that the
background fetch queue, bg fetch is the optimization that has the biggest positive
effect on the TTR value as it pre-fetches pages in the background and thus effectively
reduces the number of page faults if the page is loaded before the VM accesses it. The
TTR graphs also show that it is clearly beneficial to load the page cache instead of
simply purging it (which is what the ballooning technique basically does) if the goal
is to achieve a guaranteed minimal utilization as soon as possible.

Figure 8, finally, shows the breakdown of the restoration time (the time until the
VM becomes accessible) and the time until the VM reaches the designated TTR. For
most benchmarks, the TTR is very short. In the case of desktop the applications
inside the VM trigger a number of pagefaults relatively late after the VM has been
restarted which results in a long TTR.

Overall, the proposed method achieves very fast restoration times from checkpoint
images that are significantly smaller than those of related work. Compared to unmod-
ified Xen, on average, the VM achieves its “usable” state about 50 % sooner, i.e. after
about 12 s. Zhang et al. report TTR values between 20 and 80 s for VMs with
1 GB of memory; our method clearly outperforms their approach.

6 Conclusion

We have proposed a technique for efficiently restoring VMs from snapshots that do
not include data for memory pages whose contents are duplicated on external storage.
Instead of loading the entire memory of the VM from disk before resuming the VM,
the VM is restarted after only partially restoring its memory contents. Pages that still
need to be loaded from disk before they can be accessed are protected by marking them
invalid in the VM’s page tables. A background process fetches pages into the VM’s
memory; and accesses to pages that have not yet been restored are intercepted by a
page fault handler. Several optimizations such as coalescing accesses to neighboring

@ Springer

438 Int J Parallel Prog (2015) 43:421-439

disk blocks and pre-loading a a varying number of pages significantly improve the
performance of our solution.

The proposed technique has been implemented in the Xen 4.1 hypervisor and com-
pared against original Xen and related work. Compared to Xen, the VM reaches
the required minimal utilization after only 50 % of the time for optimized checkpoint
images that require 40 % of the space. Compared to related work, we show that the pro-
posed technique achieves significantly improved time-to-responsiveness. On average,
a VM with 4 GB of memory achieves the minimally required utilization after 12 sec-
onds; a value we believe enables the use of the proposed technology in VDI/VDC
environments.

Acknowledgments We thank the reviewers for the helpful and constructive feedback. This research was
supported by the Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future Planning (2012R1A1A1042938). ICT at Seoul
National University provided research facilities for this study.

References

1. Miller, K., Pegah, M.: Virtualization: virtually at the desktop. In: Proceedings of the 35th annual ACM
SIGUCCS fall conference. ACM, SIGUCCS’07, New York, NY, USA, pp. 255-260 (2007)

2. Sridharan, M., Calyam, P., Venkataraman, A., Berryman, A.: Defragmentation of resources in virtual
desktop clouds for cost-aware utility-optimal allocation. In: Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pp. 253-260 (2011)

3. Citrix: Xen Desktop 7. http://www.citrix.com/products/xendesktop/ (2013)

4. Laadan, O., Nieh, J.: Transparent checkpoint-restart of multiple processes on commodity operating
systems. In: 2007 USENIX Annual Technical Conference on Proceedings of the USENIX Annual
Technical Conference. USENIX Association, ATC’07, Berkeley, CA, USA, pp. 25:1-25:14 (2007)

5. Sancho, J.C., Petrini, F., Johnson, G., Fernandez, J., Frachtenberg, E.: On the feasibility of incremental
checkpointing for scientific computing. Int. Parallel Distrib. Process. Symp. 1, 58b (2004)

6. Zhang, 1., Garthwaite, A., Baskakov, Y., Barr, K.C.: Fastrestore of checkpointed memory using working
set estimation. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. ACM, VEE 11, New York, NY, USA, pp. 87-98 (2011)

7. Waldspurger, C.A.: Memory resource management in vmware esx server. SIGOPS Oper. Syst. Rev.
36, 181-194 (2002)

8. Park, E., Egger, B., Lee, J.: Fast and space-efficient virtual machine checkpointing. In: Proceedings of
the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. ACM,
VEE’11, New York, NY, USA, pp. 75-86 (2011)

9. VirtualBox. http://www.virtualbox.org (2013)

10. Koto, A., Yamada, H., Ohmura, K., Kono, K.: Towards unobtrusive vm live migration for cloud
computing platforms. In: Proceedings of the Third ACM SIGOPS Asia-Pacific conference on Systems.
APSys’12, Berkeley, CA, USA, USENIX Association, pp. 7-7 (2012)

11. Plank, J.S., Beck, M., Kingsley, G.: Compiler-assisted memory exclusion for fast checkpointing. IEEE
Tech. Comm. Oper. Syst. Appl. Environ. 7, 10-14 (1995)

12. Heo,J., Yi, S., Cho, Y., Hong, J., Shin, S.Y.: Space-efficient page-level incremental checkpointing. In:
Proceedings of the: ACM Symposium on Applied computing. ACM, SAC *05, New York, NY, USA,
pp. 1558-1562 (2005)

13. Yi, S., Heo, J., Cho, Y., Hong, J.: Adaptive page-level incremental checkpointing based on expected
recovery time. In: Proceedings of the: ACM Symposium on Applied computing. ACM, SAC *06, New
York, NY, USA, pp. 1472-1476 (2006)

14. Baker, M., Sullivan, M.: The recovery box: Using fast recovery to provide high availability in the unix
environment. In: Proceedings USENIX Summer Conference, pp. 31-43 (1992)

15. Li, Y., Lan, Z.: A fast restart mechanism for checkpoint, recovery protocols in networked environments.
In: Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pp. 217-226 (2008)

@ Springer

http://www.citrix.com/products/xendesktop/
http://www.virtualbox.org

Int J Parallel Prog (2015) 43:421-439 439

16.
17.
18.

20.

21.

Habib, I.: Virtualization with kvm. Linux J. 2008 (2008)

VMware Workstation. http://www.vmware.com/products/workstation (2013)

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield,
A.: Xen and the art of virtualization. In: SOSP ’03: Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles. ACM, New York, NY, USA, pp. 164-177 (2003)

. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using adaptive pre-paging

and dynamic self-ballooning. In: VEE ’09: Proceedings of the: ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. ACM, New York, NY, USA, pp. 51-60 (2009)
Jiang, S., Chen, F., Zhang, X.: Clock-pro: an effective improvement of the clock replacement. In:
Proceedings of the Annual Conference on USENIX Annual Technical Conference. ATEC ’05, Berkeley,
CA, USA, USENIX Association, pp. 35-35 (2005)

The Xen Hypervisor. http://www.xen.org (2013)

@ Springer

http://www.vmware.com/products/workstation
http://www.xen.org

	Efficiently Restoring Virtual Machines
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Space-Optimized Snapshots
	2.2 Optimized Restoration

	3 Efficiently Restoring VMs from Checkpoints
	3.1 Fast Restoration of a VM
	3.2 Maintaining Consistency
	3.3 Achieving a Short Time-to-Responsiveness
	3.4 Implementation

	4 Experimental Setup
	5 Experimental Results
	5.1 Restoration Time
	5.2 Time-to-Responsiveness

	6 Conclusion
	Acknowledgments
	References

