
Efficient Live Migration of Virtual
Machines Using Shared Storage

Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger
School of Computer Science and Engineering, Seoul National University

{changyeon, erik, jeongseok, bernhard}@csap.snu.ac.kr

Abstract
Live migration of virtual machines (VM) across distinct physical
hosts is an important feature of virtualization technology for main-
tenance, load-balancing and energy reduction, especially so for data
centers operators and cluster service providers. Several techniques
have been proposed to reduce the downtime of the VM being trans-
ferred, often at the expense of the total migration time. In this work,
we present a technique to reduce the total time required to migrate a
running VM from one host to another while keeping the downtime
to a minimum. Based on the observation that modern operating sys-
tems use the better part of the physical memory to cache data from
secondary storage, our technique tracks the VM’s I/O operations
to the network-attached storage device and maintains an updated
mapping of memory pages that currently reside in identical form
on the storage device. During the iterative pre-copy live migration
process, instead of transferring those pages from the source to the
target host, the memory-to-disk mapping is sent to the target host
which then fetches the contents directly from the network-attached
storage device. We have implemented our approach into the Xen
hypervisor and ran a series of experiments with Linux HVM guests.
On average, the presented technique shows a reduction of up over
30% on average of the total transfer time for a series of bench-
marks.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability—Checkpoint/restart; D.4.2 [Operating Systems]: Stor-
age Management—Storage hierarchies; D.4.4 [Operating Sys-
tems]: Communications Management—Network communication

General Terms Design, Measurement, Performance, Reliability

Keywords Virtualization; Live migration; Storage; Xen

1. Introduction
Over the past few years, the availability of fast networks has lead
to a shift from running services on privately owned and managed
hardware to co-locating those services in data centers [1]. Along
with the wide-spread availability of fast networks, the key tech-
nology that enables this shift is virtualization. In a virtualized en-
vironment, the software does not run directly on bare-metal hard-
ware anymore but instead on virtualized hardware. The environ-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’13, March 16–17, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1266-0/13/03. . . $15.00

ment (such as the number of CPUs, the amount of RAM, the disk
space, and so on) can be tailored to the customer’s exact needs.
From the perspective of the data center operator, virtualization pro-
vides the opportunity to co-locate several VMs on one physical
server. This consolidation reduces the cost for hardware, space, and
energy.

An important feature of virtualization technology is live migra-
tion [9]: a running VM is moved from one physical host to an-
other. Live migration is attractive to data center providers because
moving a VM across distinct physical hosts can be leveraged for a
variety of tasks such as load balancing, maintenance, power man-
agement, or fault tolerance. The task of migrating a running VM
from one host to another has thus attracted significant attention in
recent years [6, 9, 12, 13, 15, 18, 20, 27]. Live migration is only
useful if the service provided by the running VM is not interrupted,
i.e., if it is transparent to the user. To migrate a running VM across
distinct physical hosts, its complete state has to be transferred from
the source to the target host. The state of a VM includes the perma-
nent storage (i.e., the disks), volatile storage (the memory), the state
of connected devices (such as network interface cards) and the in-
ternal state of the virtual CPUs (VCPU). In most setups the perma-
nent storage is provided through network-attached storage (NAS)
and does thus not need to be moved. The state of the VCPUs and
the virtual devices comprise a few kilobytes of data and can be eas-
ily sent to the target host. The main caveat in migrating live VMs
with several gigabytes of main memory is thus moving the volatile
storage efficiently from one host to the other.

The prevalent approach for live VM migration is pre-copy [9].
The contents of the VM’s memory are first sent to the target host
and then the VM is restarted. To keep the downtime, i.e., the time
during which the VM is not running, to a minimum, data is sent in
several iterations while the VM keeps running on the source host.
In each following iteration, only the pages that have been modified
since the last round are sent. Another approach is post-copy [13].
Here, only the VM’s VCPU and device state is sent to the target
host and restarted there immediately. Memory pages accessed by
the VM are then fetched in parallel and on-demand while the VM
is running on the target host.

Both of these approaches minimize the downtime of the VM at
the expense of the total migration time, i.e., the time from when the
migration is started until the VM runs independently on the target
and can be destroyed on the source host. Several techniques aim at
reducing the total migration time through compression of memory
pages [16] or trace-and-replay [18].

In this work, the goal is to reduce the total migration time by
minimizing the data sent across the distinct physical hosts. Park et
al. [22] have observed that in typical setups a considerable amount
of data in the memory is duplicated on disk; they report up to
94% of duplication in extreme cases with lots of disk I/O. This
duplication is caused by modern operating systems’ disk caches

41

with which the long latency to physical storage is to be hidden.
Park et al. have used this observation to minimize the image size
of VMs that are to be restarted on the same physical host at a later
time. In our work, the same idea is applied to live migration for
VMs using shared network-attached storage: instead of transferring
the entire (possibly compressed) memory data, we only send the
data of memory pages whose content is not available on the shared
storage device. In order to restore the complete memory image
on the target host, the source host sends a list of shared storage
blocks along with the VM’s memory locations. The target host then
fetches these disk block directly from the attached network storage
while the migration continues running. This approach is especially
attractive in a setup where the maximum bandwidth between the
hosts is limited but the NAS is connected through a high-speed
network. Our approach aims to improve the total migration time
of VMs within data centers with network-attached shared storage;
the proposed method does not optimize live migration across data
centers.

The presented method is independent of almost all other op-
timization techniques such as iterative pre-copying, post-copying,
and data compression. Existing techniques can be augmented by
integrating the approach presented here to (further) reduce the total
migration time.

The contributions of this paper are as follows:

• we propose an efficient technique for live-migrating VMs from
one host to another by transferring only unique memory pages
directly from the source to the target. Pages that are duplicated
on disk located on shared storage are fetched directly by the tar-
get host. To the best of our knowledge, this is the first approach
that does not send duplicated data directly from the source to
the target host.

• we show the feasibility of the proposed technique by providing
an implementation of this technique in version 4.1 of the Xen
hypervisor [8] for HVM guests.

• we demonstrate the effectiveness of the proposed technique
by running a series of benchmarks. We achieve an average
improvement in the total migration time of over 30% with
up to 60% for certain scenarios at a minimal increase of the
downtime. In addition, thanks to the shorter total migration
time, the overhead caused by live migration is reduced which
leads to an increased performance of the migrated VM.

The remainder of this paper is organized as follows: Section 2
gives an overview of related work on live migration of virtual ma-
chines. In Section 3, the technique to efficiently migrate a VM is
described in more detail. Section 4 contains the design and im-
plementation of the proposed live migration framework. Section 5
evaluates our technique, and Section 6 concludes the paper.

2. Related Work
Live migration is actively being researched and a number of tech-
niques have been proposed to migrate a running VM from one host
to another. The predominant approach for live VM migration is
pre-copy. The bare-metal hypervisors VMware [28], KVM [12],
and Xen [2], plus hosted hypervisors such as VirtualBox [21] em-
ploy a pre-copy approach. To reduce the downtime of the VM, the
state of the VM is copied in several iterations [9]. While transfer-
ring the state of the last iteration, the VM continues to run on the
source machine. Pages that are modified during this transfer are
recorded and need to be re-transmitted in the following iterations
to ensure consistency. The iterative push phase is followed by a
very short stop-and-copy phase during which the remaining mod-
ified memory pages as well as the the state of the VCPUs and the
devices are transferred to the target host. The pre-copy approach

achieves a very short downtime in the best case, but for memory-
write-intensive workloads the stop-and-copy phase may increase to
several seconds. Remote Direct Memory Access on top of modern
high-speed interconnects can significantly reduce memory replica-
tion during migration [15].

Post-copy-based techniques take the opposite approach: first,
the VM is stopped on the source host and the state of the VCPU
and devices is transferred to the target host. The VM is immediately
restarted on the target host. Memory pages are fetched on-demand
from the source machine as the VM incurs page-faults when access-
ing them on the target machine. This approach achieves a very short
down-time but incurs a rather large performance penalty due to the
high number of lengthy page faults on the target machine. Hines
et al. [13] combine post-copying with dynamic self-ballooning and
adaptive pre-paging to reduce both the amount of memory trans-
ferred and the number of page faults. Hirofuchi et al. [14] employ
a post-copy-based approach to quickly relocate VMs when the load
of a physical host becomes too high.

Other techniques include live migration based on trace and re-
play [18], memory compression [16, 24], simultaneous migration
of several VMs from one host to another [11], or partial VM mi-
gration [5]. Liu et al. [18] present a technique that first writes the
state of the running VM to the local storage on the source machine.
That state is then transferred once to the target machine. The VM
continues to run on the source machine and all modifications to
memory pages are logged in a trace file which is transferred iter-
atively to the target host. The target host then replays those mod-
ifications in the copy of the running VM. At the end of the itera-
tive phase, a short stop-and-copy phase is used to transfer the final
state to the target machine. Jin et al. [16] enhance the iterative pre-
copy approach by compressing the data that is to be transferred in
each round from the source to the target machine. Svärd et al. [24]
extend this idea by delta-compressing changes in memory pages.
Deshpande et al. [11] study the problem of simultaneous migration
several VMs. Their idea is to detect memory pages of identical con-
tents across different VMs and transfer duplicated pages only once.
Our work in this paper is orthogonal to memory compression and
simultaneous live-migration. Bila et al. [5] propose partial VM mi-
gration of idle VMs running on users’ desktops to a consolidation
server with the goal of reducing overall energy consumption. The
authors use a post-copy approach where only the accessed memory
pages and disk blocks are transferred to the server. The partially-
migrated VMs continue running on the server while the desktops
can be put into a low-power mode. As soon as the user continues
to work on his desktop, the modified state of the partially migrated
VM is transferred back to the desktop. The authors report signifi-
cantly reduced transfer times to migrate the working set of the idle
VM. Other than in our approach, however, the VM on the desktop
can not be destroyed since it is never fully transferred.

The work most closely related to our technique was presented
by Park et al. [22]. The amount of data saved during (iterative)
checkpoints is significantly reduced by tracking memory pages
residing in identical form on the attached storage device and not
including such pages in the memory image. Instead, a mapping of
memory pages to disk blocks is stored in the checkpoint image
which is used to load the data directly from the storage device
instead of the checkpoint image. We use the same technique as Park
to transparently intercept I/O requests and maintain an up-to-date
mapping of memory pages to disk blocks. Our work differs from
Park’s approach in that we apply the same idea to live migration:
instead of transmitting memory data that exists in identical form
on the network-attached storage device, we transfer a list of disk
blocks along with the memory locations to the target host. The
receiver on the target host then fetches these blocks directly from
the attached network drive into the VM’s memory.

42

0%

10%

20%

30%

40%

50%

60%

Windows Linux

Figure 1. Amount of duplication between memory and external
storage.

3. Efficiently migrating live VMs
Migrating a running VM from one physical host to another requires
that the entire state of the VM is transferred. The state of a VM
comprises the VCPUs, the configuration of the drivers, the VM’s
memory and the permanent storage. In data center setups, the
permanent storage is typically a network storage device - an iSCSI
partition or a drive mounted via NFS. Consequently, the contents
of permanent storage do not need to be moved to the target host.
With memory sizes of several gigabytes even for virtual machines,
transferring the memory state to the target host thus becomes the
bottleneck of live migration.

3.1 Motivation
Modern operating systems cache data from permanent storage in
unused volatile memory to hide the long access latency. The longer
the system is running, the bigger an amount of otherwise unused
memory is dedicated to this cache. In data centers, the physical
hosts are typically attached over a very fast network to a network
storage device as well as to the external world. During live mi-
gration, a lot of data needs to be sent from one physical host to
another. In order not to affect the quality of service of the whole
data center, the maximum bandwidth with which data is sent be-
tween distinct physical hosts is usually limited. This can easily lead
to migration times of tens of minutes for VMs that have several
gigabytes of main memory. Our goal is thus to detect duplicated
data and fetch this data directly from the attached storage device.
This considerably reduces the amount of data sent between the two
hosts involved in live migration and has the potential to signifi-
cantly shorten the total migration time.

Duplication of data between memory and external storage.
The operating system and the running applications often occupy
only a small fraction of the total available memory, leaving most
of the memory unused. Modern operating systems use this unused
memory to cache recently accessed blocks of the attached storage
device. The data of this cache is thus duplicated: one copy resides
on the permanent storage device, another copy exists in the memory
of the VM. In addition to cached data, application data such as
code pages or read-only data pages also exist in external storage
as well as in the memory. It is not uncommon that the amount
of duplication between the permanent storage and the memory
reaches more than 50%, and this trend is likely to continue with
ever-increasing memory sizes. Park et al. [22] have measured the
amount of duplication between disk and memory for Linux and
Windows HVM guests running in Xen. Even for relatively small
memories (1 GB), they have observed a duplication ratio of 93% for

the Linux HVM guest after heavy I/O. Figure 1 shows the results
of our experiments with Linux and Windows HVM guests running
on a VM with 4 GB of RAM. The first data point represents the
amount of duplication after booting the system up and logging in.
The second data point was taken after performing some editing in
the LibreOffice application suite [25]. The third data point, finally,
was taken after copying data from a USB stick to the local storage
device. Both HVM guests, Windows and Linux, show that over
time, more and more data is cached in memory. For the last data
point in Figure 1, in the Windows HVM 40% or 1.5 GB of the total
memory is duplicated on external storage. For Linux, the amount
of duplication is even higher with 55% or 2.2 GB of data. These
results demonstrate that there is a lot of potential for reducing the
amount of data that needs to be sent from the source to the target
host during live migration.

Transparent live migration. To make live migration as trans-
parent as possible, the utmost concern is the downtime, that is, the
time between the moment the VM is stopped on the source host
and the moment when the VM is restarted on the target host. To
achieve a short migration downtime, several techniques have been
developed [9, 13, 18, 24] that have very short downtimes at the
expense of the total amount of transferred data and/or the total mi-
gration time. The prevalent method is to send data in iterations to
the target host while the VM keeps running on the source host [9].
Memory pages that get modified on the source host need to be re-
transmitted in one of the following iterations. With pre-copying ap-
proaches the total amount of data can thus be significantly bigger
than the size of the VM’s memory. Other techniques, such as post-
copy [13] immediately restart the VM on the target host and fetch
the accessed memory pages on-demand. Such approaches have a
very short downtime and transmit each memory page exactly once;
however, the VM on the target host can experience a significant per-
formance degradation due to the frequent high-latency page fetch
operations.

Network topology in data centers. A high-speed connection to
the outside world as well as the network-attached storage device are
indispensable for a data center setup. The interconnection network
between the physical hosts, on the other hand, does not need to be
as fast; furthermore, the available bandwidth is preferably used to
provide access to the VMs from the outside world. To minimize
the effects of live migration on the quality-of-service in a data
center environment, the maximum bandwidth available during live
migration is often limited. Unavoidably, a rate-limited connection
increases the total migration time.

Based on the three observations above, we propose the follow-
ing method to efficiently migrate a running VM: at runtime, we
track all I/O operations to permanent storage and maintain an up-
dated list of memory pages that are currently duplicated on the stor-
age device. When migrating, instead of transferring those pages
over the rate-limited connection from the source to the target host,
the target machine reads them directly from the attached storage de-
vice. This technique is orthogonal to iterative pre-copying or post-
copy approaches, and can also be combined with techniques that
compress the data to be transferred. In the following section, the
proposed method is described in more detail.

3.2 Design
The key idea of the proposed method is to fetch memory pages
that also exist on the attached storage device directly from that
device instead of transferring them directly from the source to the
target host. Figure 2 illustrates the idea: memory pages that have
been recently read from or written to external storage and are thus
duplicated are shown in green. Such pages include pages from code
and read-only data sections of running applications and cached disk

43

VMM

guest

VMM

migrated
guest

15 16 ...

NAS

<(2,15),(5,16),...>

source target

Figure 2. Duplicated memory pages are loaded directly from ex-
ternal storage.

blocks. Shown in blue are memory pages which contain data that is
not duplicated. These pages include, for example, the stack.

Detecting duplication between memory pages and disk blocks
immediately before transmission is infeasible due to the large com-
putational overhead. One would have to keep a hash value for every
disk block, then compute and compare the hash value of a memory
page with those of all disk blocks. Instead, we transparently inter-
cept all I/O requests issued by VMs and maintain an up-to-date list
of memory pages to disk blocks.

Transparent I/O interception is possible because the VMM has
to arbitrate accesses to shared devices such as NICs and attached
storage devices in order to ensure correct operation and proper
isolation between the different VMs. To detect changes to memory
pages that contain disk block data, we re-map such pages read-
only. Whenever a guest tries to modify such a page by writing to
it, a memory page fault is raised. This page fault is intercepted by
the VMM which then removes the page-to-block mapping, restores
the write access permission of the page and restarts the operation.
Transparently intercepting I/O operations and especially the extra
page faults cause some overhead; however, as shown in Section 4.1,
due to the long-latency nature of I/O operations and the fact that for
each tracked memory page at most one extra page fault can occur,
this overhead is not noticeable.

When a VM running on a source host is about to be migrated
to a target host, the contents of the VM’s memory are sent to the
target host. We consider iterative pre-copying here, however, since
the presented method is largely independent of existing techniques
it can easily be integrated into those techniques as well. In an itera-
tive pre-copy approach, the contents of the running VM’s memory
are sent to the target host over several iterations[9]. Since the VM
continues to run while the data is being transferred, memory pages
that have already been transferred can get modified. The VMM thus
tracks changes to already transferred pages by marking the corre-
sponding page table entry (PTE) in the memory management unit
(MMU) read-only, much in the same way the I/O tracking pro-
cess is operating. In the following iteration, only modified memory
pages need to be sent to the target host. This iterative process stops
if (a) only very few memory pages have been modified since the
last iteration or (b) if a maximum number of iterations is reached.
Which termination condition holds depends on what tasks the run-
ning VM is executing: tasks that generate only few modifications
to memory pages (i.e., dirty pages at a low rate) tend to terminate
the iterative process early, while VMs that dirty memory pages at a
high rate will eventually hit the iteration threshold. Once the itera-

tive process has stopped, the VM is stopped on the source host, the
remaining dirtied memory pages are sent to the target host along
with the state of the VM’s devices and VCPUs, and then restarted
on the target host.

The proposed technique seamlessly integrates into the iterative
pre-copy approach: instead of sending all dirtied memory pages to
the target host, only pages whose contents are not duplicated on
external storage are transferred. Dirtied pages whose contents are
known - because they have been loaded from or written to external
storage and have remained unmodified since - are assembled into a
list containing pairs of the form (PFN, disk block) where PFN
denotes the memory page in the guest and disk block contains
the index of the disk block(s) containing the data.

The tracking of dirtied pages is identical to that in the unmod-
ified iterative pre-copy approach, and happens in addition to the
transparent interception of I/O. The list of duplicated pages is as-
sembled by joining the bit vector containing the list of dirtied pages
with the current mapping of memory pages to disk blocks. It is
thus possible that in two subsequent iterations the identical element
(PFN, disk block) appears in the list of pages to be loaded from
external storage. This happens if, for example, block disk block
is loaded into memory page PFN before the first iteration, then sub-
sequently written to and flushed back to external storage between
the first and the second iteration. The list of duplicated pages con-
tains the same element (PFN, disk block), but the dirty bit for
page PFN will trigger inclusion of the page in the current round.

On the target host, a receiver process fetches the list of dupli-
cated pages and the contents of the dirty pages. Dirty pages are
simply copied 1:1 into the memory space of the VM being mi-
grated. The list of duplicated pages is sent to the NAS fetch queue,
a background process that processes the items on the fetch queue
by loading the contents from disk and copying them into the appro-
priate memory page. Since the NAS fetch queue operates in parallel
to the migration process, it is possible that a data from disk arrives
after a newer version of the same page has already been received in
one of the successive iterations. To detect such cases, the target host
maintains a version number for each memory page. For each mem-
ory page received in a successive iteration all outstanding requests
to the same page in the NAS fetch queue are discarded. Similarly,
if a fetch request is received for a page that is still in the NAS fetch
queue, the old request is discarded as well. If the NAS fetch queue
has just issued a load operation to the NAS device while the target
memory page is being overwritten with newer data, then the data
fetched from disk is discarded upon arrival at the host.

After the data in the final round has been sent to the target
host, the VM cannot be restarted until all entries on the NAS
fetch queue have been processed. This synchronization has the
potential to adversely affect the downtime of live migration. A
feedback mechanism ensures that this does not happen: the NAS
fetch queue continuously measures the I/O bandwidth of the NAS
device and reports it back to the source host along with the number
of outstanding requests. The source host can estimate the time
required to process all outstanding plus new requests and decide to
send some duplicated pages over the direct link instead of including
them in the list of duplicated pages. In the last round, all dirtied
pages, duplicated or not, are send directly over the direct link.

Figure 3 illustrates the operation of the proposed technique with
an example. When the live migration is started on the source host,
initially all memory blocks are marked dirty. The list of duplicated
pages shows that memory pages 2, 5, and 8 contain the contents
of disk blocks 15, 16, and 3, respectively. During the first round,
the source host thus first sends <(2,15), (5,16), (8,3)> to
the target host, followed by the contents of memory pages 1, 3,
4, 6, and 7. The target host adds the list of duplicated pages to the
(initially empty) NAS fetch queue and copies the memory pages

44

source target

iteration 0
1 432 5 876

15 16 3
1 432 5 876
 0 0 0 0 0 0 0 0

1 643 7

<(2,15),(5,16),(8,3)>

 0 0 0 0 0 3 0 0 0

 0 0 0150 0 30 0 0

30

<(2,15)0,(5,16)0>

150

<(5,16)0>

 1 1 0150 160 1 0 1

160

<(6,6)1, (4,5)1>

1 432 5 876

515 16 6
1 432 5 876
 1 0 0150 0 1 0 0

1 8

<(6,6), (4,5)>

iteration 1

NAS fetch queue

1 432 5 876

715 16
1 432 5 876
 1 2 0150 160 1 0 2

<(4,7)>

last iteration

 1 2 0150 160 1 0 2

61

<(4, 5), (4, 7)>

 1 72 0150 160 1 0 2

7

<>

1 432 5 876

79 16 6
1 432 5 876
 0 72 093 160 1 0 2

<>

iteration 2

2

stop VM

restart VM

 x

Px

 x

dirty page

memory page from round x
fetched duplicated page from round x

duplicated page to be fetched from round x

Legend

6

X

NAS

Figure 3. Memory pages whose contents are known to be duplicated on disk are fetched directly from the NAS device.

into the memory space of the VM being migrated. For each page
and fetch request is recorded as well. The NAS fetch queue then
proceeds to fetch disk blocks 3 and 15 from the NAS device while
the VM continues to run on the source host. Each processed fetch
request is removed from the queue. In iteration 1, the source host
again sends the list of duplicated pages <(6,6), (4,5)> and the
dirtied memory pages (1 and 8) to the target host. The list of
duplicate pages is appended to the NAS fetch queue, and page data
is directly written into the VM’s memory. Between iteration 1 and
2, memory page 4 has been replaced by disk block 7 and is resent to
the target host. The NAS fetch queue thus removes the old request
for memory page 4, (4,5) from the queue and replaces it with
the new one, (4, 7). Additionally, while the NAS fetch queue is
processing the entry (6, 6), a new version for memory page 6
has also been received in iteration 2. Before writing the block data
to memory page 6, the NAS fetch queue compares the versions
of the data currently residing in page 6 (=2) and the version of
the fetched block (=1). Since the memory page already contains
a newer version, the data fetched from the NAS is discarded. In
the final iteration, only one memory page has been modified. Its
contents are duplicated on disk, however, since this is the last round
the source sends the contents of the memory over the direct link to
the target and does not include it in the list of duplicated pages.
The target host waits until the NAS fetch queue has processed all
outstanding entries and then restarts the VM.

4. Implementation
We have implemented the proposed technique in the open-source
virtual machine monitor (VMM), Xen 4.1 [8]. This is section dis-
cusses the details and issues of our implementation. We focus on
fully-virtualized guests (HVM guests) in our discussion; however,
the implementation for para-virtualized guests is analogous.

dom0 HVM guest
(domU)

NAS

Xen hypervisor

driver domain
(domU)

ioemu

p2b

ioemu HVM I/O

Figure 4. I/O operations in the Xen VMM

4.1 Transparent I/O Interception
In the Xen VMM, all I/O operations to secondary storage are under
control of the VMM. The Xen hypervisor itself does not contain
any device drivers; instead it delegates the task of dealing with
a variety of hardware devices to the privileged dom0 or, more
recently, unprivileged Xen driver (or stub) domains. In both cases,
I/O requests of the HVM guest running in an unprivileged user
domain (domU) go through ioemu, a modified version of the qemu
processor emulator [3] (Figure 4).

Mapping page frames to disk blocks. We associate the VM’s
memory contents with physical storage blocks by transparently
tracking all read and write requests from the HVM guest to external

45

storage. The collected information is stored in a list of duplicated
pages, the page-to-block map p2b. For each running VM, a separate
p2b map is maintained. The map is indexed by the VM’s memory
page frame number (PFN), since the number of memory page
frames is typically much smaller than the number of disk blocks.
The data stored in the p2b map is the 8-byte storage block number.

Maintaining consistency. In order to maintain a consistent p2b
map, the hypervisor needs to track memory writes to memory pages
currently included in the p2b map. For HVM guests, the hypervisor
either maintains shadow page tables [19] or hardware-assisted pag-
ing (HAP) provided by newer hardware [4]. We only support HAP
at this moment; however, Park et al. [22] have shown that tracking
modifications using shadow page tables is also possible. Whenever
an entry is added to the p2b map, the corresponding memory page
is marked read-only using the MMU’s page tables. When the guest
issues a store operation to such a page, the subsequent page fault
is caught by the Xen hypervisor. If the affected memory page is
currently included in the p2b map, the handler removes the entry,
re-maps the page read-write and restarts the store operation.

Overhead. Both the space and runtime overhead of the p2b
map are small: implemented as a hash map, the p2b map contains
one entry per memory page that is currently duplicated on external
storage. In terms of space requirements the worst case is when
every memory block is duplicated on external storage. In that case,
the number of entries is equal to the VM’s memory size divided by
the size of a memory page (typically 4KB). With 8 bytes per entry
this translates to 2 MB of storage per one GB of virtual memory,
a space overhead of 0.2%. The p2b map needs to be updated on
each I/O operation to external storage. Such I/O operations have
a long latency so that the p2b update operations are completely
hidden. To track (memory) write operations to memory pages that
are known duplicates of disk blocks, the Xen VMM maps such
pages as read-only. A subsequent write operation thus incurs the
overhead of an extra page fault during which the page table entry
of the affected page is re-mapped read-write and the corresponding
entry is removed from the p2b hash map. Since an entry is removed
from the map on a write operation, each entry on the list can incur
at most one additional page fault. To add an entry, a costly I/O
operation is required; even in the worst-case where every page
read from external storage is invalidated by performing one write
operation to it, the time overhead caused by the extra page fault is
hidden by the long-latency I/O operation.

4.2 Iterative Pre-Copy
When the live migration is started, all memory pages are initially
marked dirty. In each iteration, the memory pages that are sent
to the target host are marked clean. Similar to I/O tracking, Xen
intercepts modifications to memory pages by mapping such pages
read-only with the help of the MMU.

Integration of the proposed technique into the iterative pre-
copy algorithm is easy: in each iteration, the pre-copy algorithm
assembles the list of memory pages to be sent to the target host in
this round. We do not modify this process; however, before the data
is sent over the network, our implementation first inspects the list of
assembled pages. Pages that are known to be duplicates of blocks
residing on external storage are removed from the batch and added
to the list of duplicated pages. This list is then sent first, followed
by the data of memory pages that are not duplicated on external
storage.

4.3 Assembling the Memory Image
On the target host, more changes are necessary. First, the receiver is
modified to receive a list of duplicated pages before the actual page
data. In each iteration, this list if given to a separate background
process, the NAS fetch queue. This process maintains a queue of

blocks that need to be fetched from external storage and loaded
into memory. Consecutive blocks are coalesced whenever possible
to improve the efficiency of the read requests to external storage.
When adding a new batch of entries to the queue, older entries
that refer to the same memory page are deleted from the queue.
Additionally, all entries referring to memory pages whose contents
are transferred in the current round are also removed from the
queue.

The data fetched from external storage is not directly loaded into
the VM’s memory. Instead, it is first loaded in to a buffer. Before
copying the buffer to the corresponding page in the VM’s memory,
the NAS fetch queue checks whether the page contains more recent
data from a subsequent iteration. Such situations occur when a page
that was known to be duplicated on external storage is added to the
NAS fetch queue in iteration i, modified on the source host and
then sent over the direct link by one of the following iterations j,
where j > i. Page 6 in Figure 3 exhibits this situation: in iteration
1, the page is sent as part of the list of duplicated pages and added
to the NAS fetch queue (element (6,6)). Between iteration 1 and
2, page 6 is modified on the source host and its content are sent
and directly copied into the VM’s memory in iteration 2. When
the (now obsolete) contents of page 6 are finally fetched from
external storage, the NAS fetch queue recognizes this situation by
comparing the timestamp of both items and discards the old data.

Guaranteeing consistency. Since the proposed method ac-
cesses the same external storage device from distinct physical hosts
data consistency is an issue. During migration, only the source host
issues write requests to the external storage device while the target
host only performs read operations. We can guarantee consistency
by ensuring the following conditions hold:

• no write-caching occurs on any level (except for the guest VM
itself) to external storage.

• the target host can issue uncached reads to external storage.

The first condition does not prevent the guest VM from performing
write-caching; however, once the VM flushes the data to external
storage there must be no more write-caching, for example in the
source host or the NAS device itself. Similarly, the target host needs
to read the most recent data. The attached storage device must
provide either direct-I/O that bypasses all caches or not perform
any read-caching on any level below the target host.

In order to prevent write-after-read (WAR) hazards - due to dif-
ferent network latencies the target host may read a block before the
write command originating from the source host has completed -
we ensure that entries on the p2b map are only considered com-
mitted when the write transaction to the external storage device has
completed. Uncommitted entries are treated like ordinary memory
pages, i.e., the contents are sent directly to the target host.

5. Evaluation
This section presents the performance characteristics of the pro-
posed technique. We measure the total migration time, the total
amount of transmitted data, and the downtime for a variety of
benchmarks on a number of network setups. The results show that
our approach has the potential to significantly improve the total mi-
gration time of live VM migration at an equal downtime.

5.1 Experimental Setup
All experiments are performed on two identical hosts equipped
with an Intel Core i5-2500 processor running at 3.3 GHz and 16 GB
of main memory. For external storage a QNAP NAS server is used.
The two hosts and the NAS server are connected via Gigabit Eth-
ernet. The hosts run the Xen hypervisor 4.1.2 [8] with our modifi-
cations. Dom0 runs Ubuntu Server 11.10 (kernel version 3.0.0) [7].

46

0

50

100

150

200

250

300

X
en

10
 p

ct
35

 p
ct

60
 p

ct
85

 p
ct

X
en

10
 p

ct
35

 p
ct

60
 p

ct
85

 p
ct

X
en

10
 p

ct
35

 p
ct

60
 p

ct
85

 p
ct

X
en

10
 p

ct
35

 p
ct

60
 p

ct
85

 p
ct

X
en

10
 p

ct
35

 p
ct

60
 p

ct
85

 p
ct

unlimited 200/500 100/500 100/250 50/500

se
co

n
d

s

total migration time downtime

Figure 5. Performance in relation to duplication.

The experiments are performed on an HVM guest running Ubuntu
Desktop 10.04 LTS with a 2.6.35 kernel. The VM is configured
with two virtual CPUs and 2 GB of RAM. The guest’s virtual disk
is a file-backed image located on external storage mounted by dom0
using NFS.

5.2 Performance in Relation to Duplication
The proposed technique fetches memory pages whose contents are
duplicated directly from external storage; the performance thus di-
rectly relates to the amount of duplication. In this first series of
benchmarks, an idle VM is migrated. To trigger different ratios of
duplication between memory and disk, the VM first copies a vary-
ing amount of data from disk to /dev/null. Figure 5 illustrates
results. Unmodified represents the unmodified Xen. In 10 pct,
the VM is booted up and then immediately migrated and thus rep-
resents a case with minimal duplication. 35 pct, 60 pct, and 85
pct show the results for duplication ratio of 10, 35, 60, and 85
percent, respectively. To illustrate the effect of the network band-
width, we run each benchmark using Xen’s rate-limiting algorithm
with five different configurations: unlimited, 200/500, 100/500,
100/250, and 50/500. In unlimited the network bandwidth is
not restricted; for the other configurations, the first number denotes
the starting rate, and the second number the maximum network
bandwidth available for migration in megabits per second.

The results show that the proposed technique successfully re-
duces the total migration time for all network configurations and
amount of duplication. This is expected since if there is no duplica-
tion at all, then the proposed solution will perform exactly like un-
modified Xen. As the amount of duplication increases, the benefits
of the proposed solution become apparent. In the 100/500 config-
uration with about 50% of duplication (the bars labeled 512MB), the
total migration time including the downtime is reduced from 165 to
64 seconds.

These benchmarks also reveal the main weakness of the pro-
posed technique: the downtime of the VM can increase signifi-
cantly if the VM is idle and almost all available memory is du-
plicated on disk. For unlimited and 1024MB, the worst case, we
observe an increase of the downtime from 0.55 seconds to 20.8 sec-
onds, almost a 40-fold increase. The reason for this extreme slow-
down is as follows: with the proposed solution, live migration fin-
ishes within very few iterations. Most of the memory is duplicated
on disk, hence only very few memory pages are sent directly to
the destination host; the majority of the pages is given to the back-
ground fetch process on the destination host which then starts to

Table 1. Application Scenarios
Application Description
RDesk I web browsing, editing in an office suite
RDesk II playing a movie
Admin I compressing a large file
Admin II compiling the Linux kernel
File I/O I backing up data
File I/O II Postmark benchmark

load these pages into the VM’s memory. The adaptive iterative pre-
copy algorithm notices that the amount of sent pages is sufficiently
low to stop the VM on the source host, however, on the destination
host the background process has not yet finished loading the pages
from external storage. Since the current implementation waits for
the background process to complete before resuming the VM, this
delay can lead to a significant degradation in the downtime. For
future work, we propose two strategies to eliminate this problem:
(1) provide feedback about the progress of the background fetch
process to the iterative pre-copy algorithm. The pre-copy algorithm
can then, for example, send duplicated pages through the direct link
if there is a long back-log of pages to be loaded on the target host.
(2) resume the VM before the background fetch process has com-
pleted. This will require marking yet unloaded pages as invalid and
interception of pagefaults caused by accesses to such pages.

5.3 Application Scenarios
Lacking a standard benchmark suite for live migration of virtual
machines, we have selected several general application scenarios
similar to what has been used in related work [10, 22] and that are
representative for a Virtual Desktop Infrastructure (VDI) deployed
in data centers. For all application scenarios the user is connected
to the migrated VM by a VNC viewer using the RFB protocol [23].

Table 1 lists the application scenarios. RDesk I and II repre-
sent the standard usage scenario in VDI: a remote user connected
to his virtual desktop. In RDesk I a Firefox [26] web browser is
fetching a number of web pages and some scripted editing tasks are
performed in the LibreOffice suite [25]. RDesk II plays a movie.
These benchmarks exhibit moderate CPU and I/O activity and are
expected to perform well both in unmodified Xen and our solu-
tion. Admin I and II represent administration tasks. In Admin
I a 2 GB log file is compressed using gzip. Admin II compiles
the Linux kernel. Both benchmarks exhibit a high CPU load, a
large number of dirtied memory pages, as well as a high number of
I/O requests (both read and write). We expect our solution to per-
form significantly better due to the high activity in the page cache
and the rate of dirtied pages. The last group, File I/O I and
II represents I/O-intensive benchmarks. In File I/O I a backup
process backing up a large (2 GB) file. File I/O II runs Post-
Mark [17] (500 files from 100 to 500 KB, 80’000 transactions,
4 KB read/write buffers). These benchmarks are expected to mi-
grate quickly but exhibit performance degradation in the VM due
to the simultaneous access to the shared storage caused by the back-
ground fetch process.

For each scenario, we measure the total migration time, the
downtime of the VM, and the amount of data transferred in each
round of the iterative pre-copy algorithm. For the Administration
and File I/O scenario, we also measure the time to completion
of the benchmarks running inside the migrated VM (the Remote
Desktop scenarios have no well-defined completion point). The
baseline is the unmodified Xen hypervisor 4.1.2.

All benchmarks are migrated using Xen’s rate-limiting algo-
rithm in three different configurations: 100/250, 200/500, and
unlimited. As above, the first number represents the starting and
the second number the maximal network bandwidth in megabits

47

0.0

0.2

0.4

0.6

0.8

1.0

to
ta

l m
ig

ra
ti

on
 t

im
e

unlimited 200/500 100/250

Figure 6. Normalized total migration time.

per second, unlimited is allowed to use all of the available band-
width. The rate-limiting algorithm is used as implemented in Xen.
We expect that the proposed technique performs better in config-
urations with stricter rate-limiting, especially for benchmarks with
lots of duplication, because the connection to the NAS device is
always allowed to run at full speed.

5.4 Performance of Efficient Live Migration
Table 2 compares the performance of unmodified Xen with the pro-
posed solution for the six application scenarios for three different
network configurations. The first column lists the application sce-
nario. Column two, denoted dup, shows the percentage of memory
that is duplicated on disk when the live migration is started. The fol-
lowing columns show the performance for the three different net-
work configurations, unlimited, 200/500, and 100/250 for both
unmodified Xen and the proposed solution (denoted optimized).
For each network configuration, the total migration time (mig), the
downtime (down), and the time to complete the benchmark inside
the migrated VM (bm) is shown for unmodified Xen and the pro-
posed solution. All time values are given in seconds.

Total Migration Time. Figure 6 shows the total migration
time for the six application scenarios listed in Table 1. All results
are normalized to unmodified Xen. Except for File I/O II, the
PostMark benchmark, the proposed solution can improve the total
migration time significantly. We observe that the proposed solution
performs better if adaptive rate limiting (200/500 and 100/250) is
used. This is not surprising; in the unlimited scenario, the source
host can saturate the network connection to the destination host;
parallel fetches from external storage thus have a smaller effect
than in a constrained environment. In the case of File I/O II and
sufficient memory bandwidth, the VM still running on the source
host, the migration process, and the background fetch process are
all competing for network resources which leads to a 5 and 2%
increase of the total migration time for unlimited and 200/500.
On average, the proposed technique reduces the total migration
time by 25, 34, and 37% for the different network configurations
compared to unmodified Xen.

Downtime. Figure 7 displays the downtime of the application
scenarios normalized to unmodified Xen. In most cases, the total
migration time is similar to or even below unmodified Xen. RDesk
I suffers from a severely increased downtime (up to 8-fold in the
unlimited case). This scenario represents the worst-case for the
proposed technique: an idle VM with lots of duplicated data. The
synchronization with the background fetch process before the VM

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

do
w

nt
im

e

unlimited 200/500 100/250

Figure 7. Normalized downtime.

0K

50K

100K

150K

200K

250K

300K

350K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#p
ag

es

iteration

unmodified direct NAS

Figure 8. Pages per iteration for File I/O I.

is restarted on the target host is responsible for this increase; we
have outlined two solutions to remedy this situation in Section 5.2.
In many other cases, the downtime is actually reduced. This at first
seemingly illogical result can be explained as follows: thanks to
the reduced total migration time, the benchmarks running inside
the VM are making less progress and therefore dirty fewer memory
pages. In addition, the iterative pre-copy algorithm terminates the
migration early because in each iteration less pages are sent directly
to the destination host. This situation is illustrated in Figure 8 for
the File I/O I scenario. The last iteration, during which the VM
is stopped, comprises much fewer pages than in unmodified Xen.
This leads to a reduced transfer time and in turn a shorter downtime
of the VM.

Benchmark Performance The last important measure is per-
formance degradation of the VM caused by live migration. Un-
modified Xen itself causes a slight performance degradation due
to the tracking of dirtied memory pages between iterations. A only
source of performance degradation in the proposed solution is the
additional load put on the NAS storage device. For I/O-intensive
benchmarks that read or write a lot of data to the remote disk, the
I/O requests generated by the background fetch process may hurt
the running VM. Figure 9 shows the results for the application sce-

48

Table 2. Comparison of unmodified Xen with the proposed solution for the different application scenarios.
unlimited 200/500 100/250

application dup unmodified optimized unmodified optimized unmodified optimized
mig down bm mig down bm mig down bm mig down bm mig down bm mig down bm

RDesk I 45 61.0 1.02 - 41.2 7.95 - 94.6 0.59 - 51.0 2.50 - 175.8 0.57 - 76.3 0.97 -
RDesk II 46 53.2 1.04 - 35.2 1.13 - 83.3 1.05 - 45.9 1.16 - 165.4 1.01 - 90.2 1.05 -
Admin I 18 82.5 6.96 224 52.6 2.33 229 171.4 3.13 276 72.6 0.33 266 224.1 1.12 296 96.5 2.43 276
Admin II 10 62.4 5.37 215 56.8 5.31 237 88.8 7.13 217 84.8 6.47 234 155.7 8.57 229 147.5 9.06 242
File I/O I 24 92.6 19.49 222 53.2 7.31 226 176.6 4.52 266 69.3 1.02 223 127.7 22.81 249 79.1 9.41 205
File I/O II 12 51.8 8.49 240 54.3 8.09 262 85.0 7.35 252 79.5 7.75 270 147.1 9.04 274 149.5 9.81 290

0.0

0.2

0.4

0.6

0.8

1.0

be
nc

hm
ar

k
pe

rf
or

m
an

ce

unlimited 200/500 100/250

Figure 9. Normalized benchmark performance.

narios that run I/O-intensive benchmark with well-defined start and
end points. We observe the expected behavior for unlimited in
all benchmarks, and in the case of Admin II and File I/O II
for rate-limited migrations. However, in the majority of cases the
benchmark performance actually improves. The reason for this re-
sult is again the reduced total migration time: during migration,
I/O-intensive benchmarks see a performance hit caused by the high
network I/O activity of the migration and the overhead of track-
ing dirtied pages. Reducing the total migration time thus shortens
the period during which the benchmark suffers from reduced per-
formance which has a positive effect on the total benchmark time.
On average, the benchmark time increased by 6% for unmodified,
and is reduced by 4, resp. 5% in the case of 200/500 and 100/250.

Pages transferred. Figure 10 shows the amount of pages trans-
ferred during the entire live migration. For each application sce-
nario, unmodified Xen as well as the three network configurations
are shown. In most cases, the total number of pages received by the
target host is similar to unmodified Xen. RDesk I and II show
the expected ratio of direct vs. pages fetched from NAS as listed in
column two of Table 2. Admin II and File I/O II, on the other
hand, show in increase in the total number of pages transferred.
This is caused by two factors: first, the amount of duplication is low
(10 and 12%, respectively) and both scenarios dirty many pages
and generate a lot of I/O requests. Consequently, these two scenar-
ios also perform worst when it comes to the total migration time
(see Figure 6).

5.5 Limitations and Future Work
Overall, the proposed technique shows very promising results. The
total migration time can be significantly reduced in almost all usage
scenarios. The main weakness are idle VMs with a large amount of
duplication which suffer from a significantly increased downtime.
One might argue that an increased downtime does not matter that

0K

100K
200K
300K

400K
500K
600K

700K
800K
900K

1000K

X
en

un
li

m
it

ed
20

0/
50

0
10

0/
25

0

X
en

un
li

m
it

ed
20

0/
50

0
10

0/
25

0

X
en

un
li

m
it

ed
20

0/
50

0
10

0/
25

0

X
en

un
li

m
it

ed
20

0/
50

0
10

0/
25

0

X
en

un
li

m
it

ed
20

0/
50

0
10

0/
25

0

X
en

un
li

m
it

ed
20

0/
50

0
10

0/
25

0

RDesk I RDesk II Admin I Admin II FileI/O I FileI/O II

#p
ag

es

direct NAS

Figure 10. Number of pages transferred.

much if the VM is idle; nevertheless, we are currently working on
eliminating this problem by the approaches outlined in Section 5.2.

The proposed technique cannot be applied to live migration
between hosts that do not share storage. Furthermore, there are a
number of implementation issues that may prevent the use of this
technique: first, we assume that the attached storage is mounted
in dom0 and accessed as a file-backed disk in the VM. If the VM
itself mounts the network-attached storage, then the current method
of transparent I/O interception does not work anymore. A similar
problem occurs with the newest PVH drivers where I/O requests
cannot be intercepted transparently anymore. A possible solution
to integrate the proposed technique in HVM guests using PVH
drivers or VMs that mount the remote storage directly is providing a
driver which communicates with xentools during live migration
to inform the tools about the contents of the page cache. This is,
in fact, the way we are implementing the proposed technique for
PV guests. We are currently also working on a solution for PVH
drivers.

Last but not least, the NAS fetch queue is required to synchro-
nize with the receiver process before the VM can be restarted on
the target machine. We plan to implement a post-copy approach in
which the NAS fetch queue does not need to be empty before the
VM can be restarted. Instead, all outstanding memory pages are
marked disabled. The NAS fetch queue continues to fetch the pages
in the background. If the VM traps on a yet unavailable page, that
page is then fetched immediately via the page fault handler before
the VM is restarted.

6. Conclusion
We have presented technique for efficient live migration of virtual
machines. The key idea is that it is not necessary to send data
of memory pages that are also duplicated on the attached storage

49

device over the (often slow) network link between the distinct
physical hosts; instead that data can be directly fetched from the
NAS device.

To detect duplication between memory pages and storage
blocks, we transparently track all I/O operation to the attached
storage and maintain an up-to-date map of duplicated pages. When
migrating a VM across distinct physical hosts, instead of sending
the data of all dirty memory pages to the target host, only the data
of ordinary (i.e., not duplicated) memory pages is sent. For pages
that also exist on the attached storage device, the mapping memory
pages to disk blocks is sent to the target host from where the data is
fetched by a background process. We show that consistency can be
guaranteed by keeping a version number for each transferred page.
We have implemented and evaluated the proposed technique in the
Xen hypervisor 4.1. For a number of benchmarks run on a Linux
HVM guest we achieve an average reduction of the total migration
time of over 30%; for certain benchmarks we observe a reduction
of up to 60%.

While the implemented technique is effective in many cases,
it still leaves room for improvement. For future work, we plan
to implement a lazy-fetch algorithm on the target host. The VM
can then be restarted even sooner and before all blocks have been
fetched from the attached storage device. Minor improvements for
the current implementation such as forwarding a list of skipped
pages to the target host as well as support for para-virtualized
guests are underway.

References
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Communications of the ACM, 53(4):50–58, April 2010.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen
and the art of virtualization. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP ’03, pages 164–
177, New York, NY, USA, 2003. ACM.

[3] Fabrice Bellard. QEMU. http://www.qemu.org, 2013. Online;
accessed February 2013.

[4] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. Accelerating two-dimensional page walks for virtualized sys-
tems. In Proceedings of the 13th international conference on Archi-
tectural support for programming languages and operating systems,
ASPLOS XIII, pages 26–35, New York, NY, USA, 2008. ACM.

[5] Nilton Bila, Eyal de Lara, Kaustubh Joshi, H. Andrés Lagar-Cavilla,
Matti Hiltunen, and Mahadev Satyanarayanan. Jettison: efficient idle
desktop consolidation with partial vm migration. In Proceedings of
the 7th ACM european conference on Computer Systems, EuroSys ’12,
pages 211–224, New York, NY, USA, 2012. ACM.

[6] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schiöberg. Live wide-area migration of virtual machines including
local persistent state. In Proceedings of the 3rd international con-
ference on Virtual execution environments, VEE ’07, pages 169–179,
New York, NY, USA, 2007. ACM.

[7] Canonical Ltd. Ubuntu. http://www.ubuntu.com, 2013. Online;
accessed February 2013.

[8] Citrix Systems, Inc. Xen Hypervisor. http://www.xen.org/
products/xenhyp.html, 2012. Online; accessed February 2013.

[9] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation - Vol-
ume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX
Association.

[10] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: high availability via asyn-

chronous virtual machine replication. In NSDI’08: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Imple-
mentation, pages 161–174, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[11] Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. Live gang
migration of virtual machines. In Proceedings of the 20th interna-
tional symposium on High performance distributed computing, HPDC
’11, pages 135–146, New York, NY, USA, 2011. ACM.

[12] Irfan Habib. Virtualization with KVM. Linux Journal, 2008(166),
February 2008.

[13] Michael R. Hines and Kartik Gopalan. Post-copy based live vir-
tual machine migration using adaptive pre-paging and dynamic self-
ballooning. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environments, VEE ’09,
pages 51–60, New York, NY, USA, 2009. ACM.

[14] Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi
Sekiguchi. Reactive consolidation of virtual machines enabled by
postcopy live migration. In Proceedings of the 5th international work-
shop on Virtualization technologies in distributed computing, VTDC
’11, pages 11–18, New York, NY, USA, 2011. ACM.

[15] Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda. High
performance virtual machine migration with RDMA over modern in-
terconnects. In Proceedings of the 2007 IEEE International Confer-
ence on Cluster Computing, CLUSTER ’07, pages 11–20, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[16] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live
virtual machine migration with adaptive, memory compression. In
Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE Inter-
national Conference on, pages 1 –10, 31 2009-sept. 4 2009.

[17] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical
Report Technical Report TR3022, Network Appliance, October 1997.

[18] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live
migration of virtual machine based on full system trace and replay.
In Proceedings of the 18th ACM international symposium on High
performance distributed computing, HPDC ’09, pages 101–110, New
York, NY, USA, 2009. ACM.

[19] Raymond A. Lorie. Physical integrity in a large segmented database.
ACM Transactions on Database Systems, 2(1):91–104, March 1977.

[20] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transpar-
ent migration for virtual machines. In Proceedings of the annual con-
ference on USENIX Annual Technical Conference, ATEC ’05, pages
25–25, Berkeley, CA, USA, 2005. USENIX Association.

[21] Oracle. VirtualBox. https://www.virtualbox.org, 2012. Online;
accessed February 2013.

[22] Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and space-
efficient virtual machine checkpointing. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS international conference on Virtual execu-
tion environments, VEE ’11, pages 75–86, New York, NY, USA, 2011.
ACM.

[23] Tristan Richardson. The RFB protocol. http://www.realvnc.com/
docs/rfbproto.pdf, 2010. Online; accessed February 2013.

[24] Petter Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Eval-
uation of delta compression techniques for efficient live migration
of large virtual machines. In Proceedings of the 7th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, VEE ’11, pages 111–120, New York, NY, USA, 2011. ACM.

[25] The Document Foundation. LibreOffice. http://www.
libreoffice.org, 2013. Online; accessed February 2013.

[26] The Mozilla Foundation. Firefox. http://www.mozilla.org, 2013.
Online; accessed February 2013.

[27] Franco Travostino. Seamless live migration of virtual machines over
the MAN/WAN. In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[28] VMware. VMware VMotion: Live migration of virtual machines with-
out service interruption. http://www.vmware.com/files/pdf/
VMware-VMotion-DS-EN.pdf, 2009. Online; accessed February
2013.

50

