
Random Test Program Generation for
Reconfigurable Architectures

Seonghun Jeong∗, Youngchul Cho∗, Daeyong Shin†, Changyeon Jo†, Yenjo Han∗,
Soojung Ryu∗, Jeongwook Kim∗, and Bernhard Egger†

∗Samsung Advanced Institute of Technology, Samsung Electronics, Giheung, Korea
Telephone: +82 31 280 9518, Fax: +82 31 280 9587

{sss.jeong,rams.cho,yenjo.han,soojung.ryu,jw85.kim}@samsung.com
†School of Computer Science and Engineering, Seoul National University, Korea

Telephone: +82 2 880 1819, Fax: +82 2 880 1805
{daeyong,changyeon,bernhard}@csap.snu.ac.kr

Abstract—Automatic generation of test programs plays a major
role in the verification of microprocessors. In this work, we
propose a random test program generator (RTPG) framework for
reconfigurable architectures. Reconfigurable architectures pose a
number of problems to existing RTPGs. The proposed framework
overcomes these problems by building a hardware model directly
from the architecture description. Our RTPG only tracks the
type of the data values. This enables the framework to seamlessly
support custom ISA extensions whose semantics are not available
to the RTPG. We implement the proposed RTPG framework
for the Samsung Reconfigurable Processor (SRP), a low-power
high-performance reconfigurable architecture consisting of a
VLIW and a coarse-grained reconfigurable array processor. The
experiments show that the framework is flexible, efficient and
quickly achieves a high coverage in the generated test programs.

I. INTRODUCTION

With the ever-growing complexity of hardware designs,
coupled with the demand for greater performance and faster
time-to-market, functional verification is widely acknowledged
as the bottleneck of the hardware design cycle [3]. Although
formal methods such as model checking [10] have advanced
significantly the supported complexity of the models only
allows for validation of relatively small hardware blocks.

Simulation-based verification thus plays an important role
in the functional verification of microprocessor designs [2].
In simulation-based functional verification, the microprocessor
executes a sequence of instructions, the test program. The
outcome of the computation is compared to a reference value,
either at the end or every n cycles during execution. An
important measure for the quality of a (set of) test programs
is the coverage. Depending on the goal of the test, different
kinds of coverage are meaningful such as instruction coverage,
operand coverage, etc.

The test programs are generated by random test program
generators (RTPG). An RTPG generates a test program by
randomly selecting instructions while adhering to a number of
constraints. Hardware constraints describe constraints imposed
by the hardware. Hardware constraints range from very simple

Presented by Seonghun Jeong
Corresponding author: Bernhard Egger (bernhard@csap.snu.ac.kr)

(i.e., the syntax and latency of instructions) to complex (i.e., no
add instruction must be scheduled directly after a multiply in-
struction). The simpler hardware constraints in existing RTPGs
are typically extracted automatically from the architecture
description. Complex constraints such as which instruction
sequences are not supported by the hardware are typically
added manually by a modeling engineer [1]. User-defined
constraints, on the other hand, allow the verification engineer
to specify certain conditions that the test program must adhere
to. User-defined constraints are useful for directed random
testing, for example, exercising certain instruction sequences
mixed with randomly generated code.

Most RTPGs not only require knowledge of the syntax
but also the semantics of an instruction. Knowledge of an
instruction’s syntax is necessary to generate code with the
correct number of input/output arguments or correctly compute
the latency of an instruction. The semantics of an operation
are required to pre-compute the output of the test program or
allow biased results [1].

In recent years, coarse-grained reconfigurable array (CGRA)
processors have gained a lot of attention, both in academia [7],
[15] and industry [13], [17]. CGRAs consist of a number of
processing elements (PE), register files and an interconnection
network. Typically, the functionality of the PEs as well as the
interconnect are reconfigurable. The abundant parallelism and
the programmability at a low power consumption of CGRAs
make them ideal candidates for decoding (and encoding)
multimedia data streams in embedded systems.

The reconfigurable nature makes it difficult to apply existing
RTPGs to CGRAs. In an CGRA, the ISA, the number and
functionality of PEs, as well as the interconnection network
may be significantly different between two instances of the
same architecture. Existing RTPGs are tailored to support a
certain ISA and even though they support, for example, dif-
ferent latencies for instructions, the syntax and the semantics
of instructions are not easily modifiable. Furthermore, due to
the reconfigurable interconnection network, CGRAs cannot be
described using a simple register-transfer language since not
all PEs are directly connected to the register file(s). Instead,
scheduling techniques such as simulated annealing [14] or

edge-centric modulo scheduling [17] are used to compile a
data flow graph into a series of CGRA instructions.

In this paper, we present a directed random test program
generation framework RDG (Random Diagnostics Generator)
for Samsung Electronics’ reconfigurable architecture, the Sam-
sung Reconfigurable Processor (SRP) [17]. The SRP is a dual
VLIW/CGRA processor with configurable VLIW issue width,
number and functionality of PEs, register files, and intercon-
nection network. The configuration of the SRP is stored in
textual form and interpreted by the whole toolchain, including
compilers, simulators, debuggers and profilers. The presented
RTPG also reads the configuration of the SRP directly from the
SRP configuration files. Similar to existing RTPGs, our RTPG
needs to be aware of the instructions’ syntax and latency;
however, it can generate valid test programs without knowing
the semantics of the instructions. This enables our RTPG to
adapt without any user invention to different ISAs, customized
instructions, VLIW issue widths, and heterogeneous PEs.

Since the RDG framework has no knowledge of an instruc-
tion’s semantics it is impossible to pre-compute the outcome
of executing a test program on the chip. Verification is thus
performed by checking the values in the register files and at the
PEs’ output ports either periodically or after the test program
has ended.

Certain classes of instructions require certain input
operands. For example, the sum of the two input operands to a
memory load instruction typically represent accessed memory
address. Another example are branch instructions where one
of the the input operands denotes the target instruction of
the branch. For this reason, the RDG framework cannot be
completely oblivious to such instructions’ semantics. The SRP
configuration files groups such instructions into instruction
classes that allow our RDG framework to infer the constraints
of an instruction’s operands. While generating code, the RDG
framework thus tracks the type of each datum. When selecting
operands, the type of a datum in a register file or at the
output port of a PE is checked against the instruction’s operand
constraints.

Our RDG framework is implemented as a C++ library, and
consequently, test templates are written in plain C++ code.
This has the advantage that the verification engineers do not
have to learn a new language specifically for coding test
templates. Additionally, customized extensions of the RDG
framework are possible through sub-classing specific classes.

The experiments show that the presented RDG framework
is able to adapt to reconfigurable architectures automatically
while generating valid test programs that achieve a high
coverage.

The contributions of this paper are as follows:
• We design and implement an RTPG for complex architec-

tures that do not offer hardware-level hazard resolution.
The implemented RTPG supports the Samsung Recon-
figurable Processor, a chip consisting of a VLIW and a
CGRA unit.

• We show that RTPGs do not need to know the semantics
of instructions. By tracking the type of data values, the

proposed RTPG can support custom ISA extensions.
• We propose a test template language entirely based on a

constraint specification language library implemented in
C++. This allows the verification engineer to familiarize
himself quickly and enables him to even make small
modifications to the test template language directly.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of related work in random testing. In
Section III, the reconfigurable architecture used for this work
is described in more detail. Section IV contains the design
and implementation of our random test generation framework.
Section V evaluates the test programs generated by the random
test generator, and Section VI concludes the paper.

II. RELATED WORK

Functional verification has been and still is an active field of
research. Many different methods ranging from low-level for-
mal verification up to instruction-level functional verification
have been developed in the past. Approaches for instruction-
level functional verification are mainly concerned with the
generation of directed and/or (pseudo-)random test programs.
The methods for automatic test program generation include
simple random instruction selection, finite state machines
(FSM), linear programming, SAT, constraint satisfaction prob-
lems (CSP), or graph-based test program generation. Bin [4]
and Adir [1] model the test program generation problem as
a CSP. Their framework, Genesys-Pro, combines architecture-
specific knowledge and testing knowledge and uses a CSP
solver to generate efficient test programs. The test template
language of Genesys-Pro is quite complex and allows, for
example, biased result constraints. Corno [5] and Mishra [16]
use graph-based algorithms to generate test programs. While
Corno uses a predefined library of instructions, Mishra’s work
extracts the structure of the the pipelined processor directly
from the architecture description language and then fed to
a symbolic model verifier. Di Guglielmo [6], [9] proposes a
pseudo-deterministic automatic test pattern generator (ATPG)
based on extended FSMs. The test vectors are generated using
a constraint or a SAT solver. The test programs exercise the
processor at the gate level. Koo [11] also uses an FSM com-
bined with reduction techniques to achieve high coverage with
a small number of directed tests. In Sanches’ work [18], an
automatic, feedback-based approach that generates assembly
instruction sequences for speed debug, timing verification or
speed binning is presented. Their approach is fully automatic
and does not require any information about the processor’s
microarchitecture. The recent work of Foutris [8] analyzes
the four major ISAs (ARM, MIPS, PowerPC, and x86) and
finds that three quarters of the instructions can be replaced
with equivalent instructions. Based on this analysis, random
tests are executed that detect bugs by comparing results of
equivalent instructions.

In conclusion, several different and fully-automatic ap-
proaches have been proposed. None of the presented methods
are easily applicable to reconfigurable architectures with a

PE

lrf

PE

PE

PE

lrf

PE

PE

lrf

PE

PE

PE PE PE PE

lrf

PE PE PE

lrf

PE

PE PE PE

global register file

da
ta

 m
em

or
y

co
nt

ro
lle

r off-chip memory

SRP core
SRP processor

data
SPM

C
G

A
 c

on
fi

gu
ra

ti
on

 m
em

or
y

VLIW
instruction

cache

Fig. 1. The Samsung Reconfigurable Processor

large number of processing elements and an irregular inter-
connection network.

III. THE SAMSUNG RECONFIGURABLE PROCESSOR

The Samsung Reconfigurable Processor (SRP) is a dual-
mode VLIW/CGRA low-power processor targeting embedded
systems (Figure 1). It comprises an SRP core, on-chip memory
(instruction cache, configuration memory and data memory),
a DMA controller and a bus interface. The SRP core itself
is made up of a number of processing elements (PEs), global
and local register files, and an interconnection network. The
PEs are conceptually arranged on a 2D grid. The PEs are not
homogeneous in their functionality; while typically all PEs
support basic ALU instructions, only few support memory
operations, yet other PEs support floating point arithmetic.
The SRP operates in either VLIW or CGRA mode. CGRAs
provide excellent performance at a low power consumption in
code sequences that contain lots of parallelism. Code sections
that are dominated by control flow, however, perform poorly in
CGRA mode. Such code sections are thus compiled in VLIW
mode. Data is conveyed between the two modes through a
central data register file (cdrf), and the latency of the mode
switch operation is in the order of the latency of a branch
instruction. This allows for very efficient and frequent mode
switches. The compiler makes extensive use of this property by
scheduling control-intensive code in VLIW mode and compute
software-pipelined code for loops.

The aim of the SRP is to provide excellent performance
in code sections with lots of loop-level parallelism, yet dif-
ferent application domains exhibit different properties. SRP
instances intended for, say, video decoding typically require
a different configuration of the interconnection network and
the functionality of the PEs than instances aiming at audio
decoding. The SRP and its development environment enable
very flexible and efficient architecture exploration by storing
the entire high-level configuration of the SRP instance as
human-readable text files. The entire development environ-
ment from compiler, to simulators, profilers, and debuggers
take the architecture description as an input and thus adapt
automatically to the SRP architecture. An engineer can thus

RTPG

test
template

architecture
description

CSL
library

test
program

DUT
functional
simulator

Verification

Fig. 2. RTPG framework

test the effect of adding/removing certain functionality from a
PE or changing the interconnection network merely by editing
the configuration file, recompiling and executing the code on
a cycle-accurate simulator. In addition, the framework allows
for rapid exploration of custom ISA extensions. Custom ISA
extensions are instructions that are not part of the default
instruction set architecture. Such extensions are added to an
SRP instance by providing a C-implementation that simulated
the requested functionality. Since these extensions are not part
of the default ISA, the compiler has no knowledge of the
semantics of such instructions. Consequently, the engineer has
to invoke the custom ISA extensions explicitly. The framework
models custom ISA extensions as simple C function calls. Of
course, custom ISA extensions are supported throughout the
entire SRP development environment.

IV. DIRECTED RANDOM TEST GENERATION

This section describes the design and implementation of the
proposed RTPG in detail.

The test template is written in C++. The so-called constraint
specification language (CSL) is provided as a library. The
RTPG is guided by the test template which makes calls to the
CSL to specify the parameters of the test. In addition to the test
template and the CSL library, the reconfigurable architecture’s
configuration files are another input to the RTPG. The RTPG
then generates a test program which is run on the device-
under-test (DUT) and a functional simulator. Verification is
done online or offline either periodically or at the end of the
run by comparing register contents and data in PE output ports.
Figure 2 gives an overview of the design and the verification
setup.

Traditional RTPGs are not well-suited to support reconfig-
urable architectures such as the SRP for a number of reasons:

first, the vast majority of test generators aim at single-issue
microprocessors. Scalar processors resolve hardware hazards
automatically by delaying/reordering instructions in the in-
struction stream. Both VLIW and CGRA processors, however,
do not provide any such support at the hardware level. Instead,
the compiler (or in our case the RTPG) is responsible to
generate instruction sequences that are hazard-free.

Second, existing test generators require the semantics of
every instruction of the ISA to be known in order to pre-
compute the outcome of the computation. Additional fea-
tures, such as Genesys-Pro’s biased results [1] also require
the instructions’ semantics. An RTPG for a reconfigurable
architecture also needs to support custom ISA extensions.
Since the semantics of such instructions are not available, the
RTPG’s code generation framework must be able to schedule
valid instruction sequences in the absence of any knowledge
about the instruction (there are important exceptions to this
generalization which are discussed below).

Third, generating valid instruction sequences for CGRA and
in a limited sense also for VLIW processors requires a much
more complex scheduler than for single-issue microprocessors.
One reason is the aforementioned lack of hardware hazard
resolution. In addition to that, a scheduler must not only
consider whether an instruction can be scheduled on a PE at
a given time, but also make sure the input data can be routed
through the interconnection network. Only a limited number
of PEs are directly connected to the central data register file,
and for each local register file the directly connected PEs
vary. An RTPG for reconfigurable architectures thus has to
model the hardware at a much more fine-grained level than
RTPGs for single-issue microprocessors. Standard approaches
such as CSP- or SAT-based solutions cannot easily cope with
the massive increase in constraints which leads to unacceptably
long test program generation times.

A. Test Generation Engine

Our RTPG framework satisfies the above requirements
through a number of design choices. First, instead of modeling
the hardware and user-defined constraints as a CSP or SAT, we
have implemented a random instruction scheduler. The fine-
grained hardware model leads to massively more variables or
constraints that need to be checked by a RTPG. Even though
T.Larrabee has shown that for single-issue microprocessors
most clauses belong to 2-SAT [12] (which is solvable in
polynomial time), this does not hold for complex models.
The scheduler of our RTPG framework uses weighted-random
instruction selection with backtracking. It randomly selects
an instruction based on the instruction’s weight and then
tries to satisfy the instruction’s output and input operand
requirements. The output operand requirement is simply that
the output port of the given PE must be free when the to be
scheduled instruction outputs its result. For the input operands,
in VLIW mode, this step is completed by checking whether
the connected register file(s) can provide the necessary types
of input operands at the given time. In CGRA mode, the
scheduler needs to find a route from PEs’ input ports to output

ports of other PEs, register files, or constant value generators
that can provide a datum of the required value at the requested
time. Note that routes may take longer than one cycle to
transfer a datum from the source to the sink of the route. If
the any of the input or output requirements cannot be satisfied,
then the instruction selector randomly selects a new instruction
until the instruction can be placed. If no instruction can be
placed until a certain threshold is reached, the RTPG inserts
a no-operation. In rare cases, the instruction selector can get
stuck, for example, if the register file does not contain any
data of a certain type. If so, the last selected instructions are
unscheduled and the instruction selector starts over.

Close at hand with the instruction selector is a type tracker.
The type tracker tracks the types of all data values that
are available in registers, in memory, at PEs’ output ports
or provided by a constant generator at all times during the
test program. The type tracker tracks four types: integer,
known integer, float, and known float. The integer and float
types denote integral and real numbers of unknown values,
respectively. Integer instructions typically take two integer
input operands and compute an integer output, while floating
point instructions take floating point values as inputs and
compute a floating point value. For such instructions, the actual
value of the input/output data is not important to generate
a correct instruction sequence. Certain classes of instructions
require the actual value of certain input operands to be known.
This is true for instructions accessing memory as well as
branch/jump instructions. For the former the sum of two input
operands denotes the memory address to be accessed, and
for the latter one input operand determines the target of the
control transfer. Known integer/float values are also necessary
to support directed tests where the verification engineer wants
to generate instruction sequences that take a specific value
as an input operand. Data values of know type and value
are represented by the known integer and known float type,
respectively.

Known values are also used for loops. The RTPG inserts
a loop skeleton if requested by the test template. To prevent
infinite loops (or loops with a too large iteration count), a value
of type known integer is used as the loop bound. If required the
API of the CSL additionally allows the verification engineer
to specify the exact number of loop iterations.

The architecture configuration of the SRP allow the RTPG
to infer the type of every instruction’s input and output
operands, and this also holds for custom ISA extensions. The
architecture configuration also explicitly denotes more specific
constraints on input operands such as for memory access
operations and control transfer instructions.

If requested, the RTPG inserts initialization code that initial-
izes a minimal number of registers and memory cells to one
of the tracked types at the beginning of each test program.

B. Test Template Language

There exist probably as many test template languages as
there are RTPG. The first implementation of our RTPG also

defined its own test template language; however, we quickly
noted two main problems with this approach:

1) there is a significant learning curve involved in using the
RTPG in an industrial environment

2) even minor feature additions require extensive modifica-
tions to the RTPG framework, from parsing the template
over modifying the RTPG core itself to implement the
new features up to maintaining backwards compatibility
to previous versions.

These difficulties have persuaded us to try a somewhat
different approach: test templates are written in pure C++.

The RTPG’s core components are already implemented
in C++, and we have implemented a library, the so-called
Constraint Specification Language (CSL) library, around the
RTPG that allows the verification engineer to control various
aspects of the random test program generation. A test template
is written by overloading a specific method of the RTPG. The
test template is then compiled and linked together with the
RTPG core components and the CSL library into an executable
program. This executable program generates a random test
program every time it is invoked.

Writing test templates in C++ using the CSL library still
incurs a small learning curve, namely, to familiarize oneself
with the CSL API. However, since most engineers are already
proficient in C++ the effort is much smaller. Additions and
modification to the CSL are also much easier, and certain
modification can be implemented by the verification engineers
themselves. Per default, the CSL library only contains an
immediate value generator that produces random values within
a certain range. A verification engineer can easily create his
own subclass and overload the method that selects the imme-
diate value to, say, generate only values of special interest.
Last, compiling the test template into an executable that is
executed natively on the host allows our RTPG to achieve
a very high throughput of generated instructions even for
complex CGRA processors. The only disadvantage we have
found is that the test templates quickly look bloated compared
to domain-specific test template languages.

The code in Fig. 3 shows a working test template written
in C++ using the CSL library. The test template generates
a random VLIW schedule that is to contain 1000 instruc-
tions. The NofIterationContraint triggers insertion of
a loop and simultaneously defines the number of iterations.
The RandomOperationGenerator instance has a default
weight of 50 for all instructions with four instructions ex-
plicitly set to 100. OperationGenerators can be applied
globally (that is, for all PEs) or to single PEs. The call to
Emit(), finally, triggers code generation. The CSL library
provides much more functionality, however, it is outside the
scope of this paper.

V. EVALUATION

We have evaluated the proposed framework with twelve test
templates on a SRP tailored for multimedia decoding. The
architecture comprises a total of 20 PEs (VLIW+CGRA), two
central data register files and several local register files. The

void CSL::RTPGenerator::CSL_main(unsigned int seed,
string outputPath)

{
/// 1. define (at least one) schedule
RandomVLIWSchedule s;
AppendSchedule(s);

/// 2. Set seed value
s.SetSeed(seed);

/// 3. define constraints on the schedule
/// - restrict the number of operations to generate
s.Add(NofOperationConstraint(1000));
/// - insert a loop and restrict the iterations
s.Add(NofIterationConstraint(1000));

// 4. Add Operation & Operand Constraints
RandomOperationGenerator*
rog = new RandomOperationGenerator();

rog->SetDefaultWeight(50);
rog->Add(Operation("add32_c2c"), Weight(100));
rog->Add(Operation("fadd32"), Weight(100));
rog->Add(Operation("asr32_c2c"), Weight(100));
rog->Add(Operation("fmul32"), Weight(100));
s.SetGlobalGenerator(rog);

/// 5. emit the code
Emit();

/// 6. Print statistics
s.PrintStatistics();

}

Fig. 3. Test template example

PEs are heterogeneous; the number of distinct instructions that
can be executed on a certain PE ranges from 78 to 180.

The twelve test templates cover all currently supported con-
straints in the CSL such as different instruction and operand
weights, with/without control flow, with/without loops, on-
chip memory accesses, off-chip memory accesses, floating
point instructions and so on.

For the evaluation of the RDG framework we use three
measures: instruction coverage, operand coverage and the time
required to generate the test program. All twelve benchmarks
have been run with a constraint limiting the total number of
instructions to 500, 1000, and 4000.

Table I lists the results for 500 instructions. Columns 2 to
5 list the instruction coverage for the four PEs. Columns 6
to 9 indicate how many NOP instructions have been inserted
into the schedule. Columns 10 to 13 list the coverage of the
operands, and columns 14 and 15, finally, show the length
of the generated schedule (in cycles) and the execution time
(in seconds) of the RDG framework. Table I shows that
even for a very small number of total instructions, the RDG
framework achieves good coverage. Test template 1 and 12
are full-random (in addition to 1, 12 contains a loop), i.e., no
constraints are given except for the limitation on the number
of instructions. Coverage on PE1 and PE3 is below 50%
because both PEs can execute over 170 different instructions.
500 instructions distributed evenly to four PEs is around 125
instructions per PE; in other words, there are not enough
random instructions to achieve full coverage on PE1 and
PE3. The operand coverage shows a similar result. Some test
templates do not exercise all four PEs; in such cases the
respective entry is marked with n/a.

Table II shows the average coverage of all twelve test
templates for 500, 1000, and 4000 generated instructions. The
execution time of the test generator even for 4000 instructions
is still very moderate at 0.64 seconds. The results clearly
show that the presented RDG framework achieves very good
coverage at low instruction numbers.

TABLE I
RESULTS FOR 500 INSTRUCTIONS.

Test Template Operation Coverage NOP instructions Operand Coverage Schedule Length Generation Time
1 72% 48% 70% 45% 30 12 41 7 60% 59% 66% 55% 259 0.30
2 100% 100% 100% 100% 56 0 71 3 100% 100% 66% 100% 256 0.29
3 100% 100% 100% 100% 23 3 24 2 100% 100% 66% 100% 253 0.26
4 100% 100% 100% 100% 4 16 3 16 100% 100% 66% 100% 252 0.24
5 100% 100% 100% 100% 56 119 71 3 100% 100% 66% 100% 253 0.29
6 100% n/a 100% n/a 3 116 131 119 100% n/a 66% n/a 251 0.25
7 100% n/a 100% n/a 0 113 0 119 100% n/a 66% n/a 251 0.22
8 94% n/a 100% n/a 1 138 2 128 100% n/a 66% n/a 252 0.22
9 88% n/a 100% n/a 11 115 10 122 96% n/a 66% n/a 263 0.23

10 89% 86% 100% 97% 25 10 22 11 72% 50% 66% 100% 265 0.27
11 n/a 95% n/a 97% 131 3 135 2 n/a 68% 66% 80% 252 0.25
12 72% 48% 70% 45% 30 12 41 7 60% 59% 66% 55% 266 0.29

Avg. 92% 85% 94% 85% 31 54 45 45 90% 80% 91% 86% 256 0.26

TABLE II
RESULTS FOR 500, 1000, AND 4000 INSTRUCTIONS.

Instructions Operation Coverage NOP instructions Operand Coverage Schedule Length Generation Time
500 92% 85% 94% 85% 31 54 45 45 90% 80% 91% 86% 256 0.26
1000 98% 93% 99% 91% 60 92 85 90 95% 85% 95% 91% 510 0.32
4000 100% 100% 100% 85% 245 372 253 367 99% 98% 100% 97% 2032 0.64

VI. CONCLUSION

In this paper, we describe the design and implementation
of an RTPG for reconfigurable architectures. The proposed
RTPG supports reconfigurable VLIW and CGRA processors.
It constructs a model of the architecture by reading the archi-
tecture configuration. The main idea of our RTPG is to track
only data types instead of data values. By tracking only data
types, the RTPG does not need to know the semantics of every
instruction and can thus easily support custom ISA extensions.
Instead of defining a test template language, we provide a
constraint specification language (CSL) library written in C++.
The CSL API contains all the necessary methods to specify
directed random test templates. Experiments for the Samsung
Reconfigurable Processor show that the proposed RTPG very
quickly achieves a high coverage while adhering to the user-
imposed constraints.

REFERENCES

[1] Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Ri-
mon, Michael Vinov, and Avi Ziv. Genesys-pro: Innovations in test
program generation for functional processor verification. IEEE Des.
Test, 21(2):84–93, March 2004.

[2] B. Bentley. High level validation of next-generation microprocessors.
In Proceedings of the Seventh IEEE International High-Level Design
Validation and Test Workshop, HLDVT ’02, pages 31–, Washington,
DC, USA, 2002. IEEE Computer Society.

[3] Janick Bergeron. Writing Testbenches: Functional Verification of Hdl
Models. Kluwer Academic Publishers, 2003.

[4] E. Bin, R. Emek, G. Shurek, and A. Ziv. Using a constraint satisfaction
formulation and solution techniques for random test program generation.
IBM Syst. J., 41(3):386–402, July 2002.

[5] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. Fully auto-
matic test program generation for microprocessor cores. In Proceedings
of the conference on Design, Automation and Test in Europe - Volume 1,
DATE ’03, pages 11006–, Washington, DC, USA, 2003. IEEE Computer
Society.

[6] G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. A
pseudo-deterministic functional atpg based on efsm traversing. In
Proceedings of the Sixth International Workshop on Microprocessor Test
and Verification, MTV ’05, pages 70–75, Washington, DC, USA, 2005.
IEEE Computer Society.

[7] Jong eun Lee, Kiyoung Choi, and N.D. Dutt. Compilation approach for
coarse-grained reconfigurable architectures. Design Test of Computers,
IEEE, 20(1):26 – 33, jan-feb 2003.

[8] Nikos Foutris, Dimitris Gizopoulos, Mihalis Psarakis, Xavier Vera, and
Antonio Gonzalez. Accelerating microprocessor silicon validation by
exposing isa diversity. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44 ’11, pages
386–397, New York, NY, USA, 2011. ACM.

[9] Giuseppe Di Guglielmo, Luigi Di Guglielmo, Franco Fummi, and
Graziano Pravadelli. Efficient generation of stimuli for functional
verification by backjumping across extended fsms. J. Electron. Test.,
27(2):137–162, April 2011.

[10] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[11] Heon-Mo Koo and Prabhat Mishra. Specification-based compaction
of directed tests for functional validation of pipelined processors. In
Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, CODES+ISSS ’08,
pages 137–142, New York, NY, USA, 2008. ACM.

[12] T. Larrabee. Efficient generation of test patterns using boolean differ-
ence. In Test Conference, 1989. Proceedings. Meeting the Tests of Time.,
International, pages 795 –801, aug 1989.

[13] Won-Jong Lee, Shi-Hwa Lee, Jae-Ho Nah, Jin-Woo Kim, Youngsam
Shin, Jaedon Lee, and Seok-Yoon Jung. Sgrt: a scalable mobile gpu
architecture based on ray tracing. In ACM SIGGRAPH 2012 Talks,
SIGGRAPH ’12, pages 2:1–2:1, New York, NY, USA, 2012. ACM.

[14] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
Dresc: a retargetable compiler for coarse-grained reconfigurable archi-
tectures. In Field-Programmable Technology, 2002. (FPT). Proceedings.
2002 IEEE International Conference on, pages 166 – 173, dec. 2002.

[15] Bingfeng Mei, Serge Vernalde, Diederik Verkest, and Rudy Lauwereins.
Design methodology for a tightly coupled vliw/reconfigurable matrix
architecture: A case study. In Proceedings of the conference on Design,
automation and test in Europe - Volume 2, DATE ’04, pages 1224–1229,
Washington, DC, USA, 2004. IEEE Computer Society.

[16] Prabhat Mishra and Nikil Dutt. Graph-based functional test program
generation for pipelined processors. In Proceedings of the conference
on Design, automation and test in Europe - Volume 1, DATE ’04, pages
10182–, Washington, DC, USA, 2004. IEEE Computer Society.

[17] Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke. Recur-
rence cycle aware modulo scheduling for coarse-grained reconfigurable
architectures. SIGPLAN Not., 44(7):21–30, June 2009.

[18] E. Sanchez, G. Squillero, and A. Tonda. Automatic generation of
software-based functional failing test for speed debug and on-silicon
timing verification. In Microprocessor Test and Verification (MTV), 2011
12th International Workshop on, pages 51 –55, dec. 2011.

